LEa=sA

NetVortex Data Sheet

Lexra, Inc.
Release 1.9

April 2, 2001

Lexra Proprietary and Confidential

m April 2, 2001 NetVortex

NetVortex Data Sheet Revision 1.3, for RTL Release 1.9.

This document is proprietary and confidential to Lexra, Inc.
Copyright(] 2001 Lexra, Inc.
ALL RIGHTS RESERVED

MIPS, MIPS16, MIPS ABI, MIPSII, MIPSIV, MIPSV, MIPS32, R3000, R4000, and other MIPS
common law marks are trademarks and/or registered trademarks of MIPS Technologies, Inc. Lexra,
Inc. is not associated with MIPS Technologies, Inc. in any way.

SmoothCore, Radiax, and NetVortex are trademarks of Lexra, Inc.

Lexra Proprietary & Confidential -2- Release 1.9

LEN% April 2, 2001 NetVortex

Table of Contents

1. NetVorteX ProdUCt OVEIVIEWcooiiuriiiiiiee ittt e e e 9
O R 1 1 oY [o (oo RS 9
N (= YA 1= 1 (=R 10
1.3, LXB00O ProCESSOr OVEIVIEW ...cccciiuriiieeiiiiieeeeaiiiieeeesstteeassssteeeesssntseeessssseeesssssneeessssnnes 12
1.4, NetVorteX SYSIEM OVEIVIEWcccciiiiiiiie ettt e s e e e e e e e e e e e aaaaaeaeaeaeanes 14
1.5. System Level Building BIOCKSccuuuiiiiiiiiiiae e 15

151, SIMMU oottt e e r e e e e e e anaes 16
1.5.2. Local MeMOrY INTEIFACEooiiiiiiiiieiiiiie e 16
1.5.3. COProCeSSOr INTEIACEcoeeeeiiiiiiiiiieieee e e e e e e e e e 16
1.5.4. Custom ENgiNe INtEITACEcevviiieeeiii i 16
1.5.5. LexraBus CONtrOller ..ot 16
1.5.6. Block Transfer CONrOllerscc.ueuiiiiiiiiiiae e 17
1.5.7. Crossbar Device INtErfaCeseoeiiiiiiiiiiiiiiiie e 17
1.5.8. Device Management INtErfacecccoeeiiiiiiiiiiiiiiiee e 17
1.5.9. Building Block INtegrationccccuriiiiiieiee e e ee e e 17
1.6. RTL COre & SMOOINCOIEueiiiiiiiiiiee ittt et e e 17
1.7. EDA TOOI SUPPOIT ...eeteiiiiiieeeeieiettt ettt ettt e e e e e e e et e e e e e e e e e e e e s sanbbebeeeeeeas 18

2. LXB00O ArChItECIUIE ...ttt e e e et e e e e e e e e e erbbaan s 19

2.1, Hardware ArChitECIUIEccueiiiiiiiiiee ettt e e e e e e s e reeeeeeaaee e e s 19
2.1.1. Module PartitioNiNgccooiiiiiiiiiiiie et 19
2.1.2. SiX Stage PIPEliNecociiieieeee e 20

2.2, RALU DAa PAtN .ottt 20

2.3. System Control CoproCessor (CPO)coiiiiiiiiiiie et 20

2.4. High-Performance Context SWILCH ... 21
2.4.1. New CONEXt REQISTEIScoiiiiiiiiiee ittt 21
24,2, RESEL .ottt e e e e e e e e e e e e e ee e aeaaaae 23
2.4.3. Determining the Number of Contexts in Softwareccccccccevviivcniiiveeennnn.n. 24
2.4.4. Initiation of Context SWILCNcoiiiiiiiiiiii e 24
245, CSW INSIIUCHION ..eeviiiiiiiiiiiitiie ettt e e e e e e e 24
2.4.6. LW.CSW, LT.CSW and LQ.CSW INStrucCtionsccccccuvreeriirrreressiiiieneessnnns 24
2.4.7. WD[.CSW] INSIUCHONS ...eeeiiiiiiieiiiiiiiee ittt 25
2.4.8. WDLW.CSW, WDLT.CSW and WDLQ.CSW Instructionscccccevuvee 25
2.4.9. PIPEIINE oo e e e e e a e 25
2.4.10. New Thread SeleCtiOnccooi i 26
2.4.11. Example Context Switch for Coprocessor Operationccccccccoevvvcvvvveeeeenn. 27
2.4.12. Program Access t0 NeW ReQISIErScooiiiiiiiiiiiiiiiiie e 28
2.4.13. EXCEPLONS ...eeeiiiiiiiiiie ittt 29

2.5. Low-Overhead Prioritized INTEITUPLSc.vveieiiiiiiiee e 29

3. LX8000 RISC Programming Modelooouriiiiiiiiiiieien e eeeees 31

3.1. Summary of MIPS-I INSIIUCLIONSccceeeiiiiiiiiieiie e rrer e e e e e 31
3. 1.1, ALU INSIIUCHIONS ..eeteiiiiiiieeeies ittt ettt et e e e e e e s bbb e e e e e e e e e e e 31
3.1.2. Load and Store INSrUCTIONScocuuiiiiiiiieeee e e e e e e 32
3.1.3. Conditional MoVve INSIIUCLIONScccuvuiiiiiiiiiee e 33
3.1.4. Branch and Jump INSIFUCLIONScccoiiiiiiiiiiiiiiee et 33
3.1.5. CoNtrol INSIIUCLIONS ...cciiiiiiieiiiiiite ettt 34
3.1.6. Coprocessor INSITUCLIONSuuuiiiiieeeeiiiiiiiiiiee e e e e e e s s rr e e e e e e e e s e enareeeeees 35

3.2. Opcode Extension Using the Custom Engine Interface (CEI)cccooiiiieiiinnn, 35

Lexra Proprietary & Confidential -3- Release 1.9

LEN% April 2, 2001 NetVortex

3.2. 1. CEI OPEIALIONS ..eeeeiiiiiieeiie ittt ettt et e e e e e e e s et e e e e e e e e e e e annneeees 35
3.2.2. Interface SigNalS ... 36
3.3, Memory ManAgQEMENTcccuuiiiiiiiiieie e e e e e e er e e e e 37
3.4, EXCEPLION PrOCESSING ..ooiiieieiiieiiiiiie ettt ettt sttt e e e e e s sebnee s 37
3.4.1. Exception Processing Registers: STATUS, CAUSE, EPC, BadVAddr 39
3.4.2. Exception Processing: Entry and EXItccccciiiiiiiiiieee e 40
3.5. The Coprocessor INtErface (ClI)eiiiiiiiiiie e 40
4. LXB8000 INStruction EXIENSIONSccvvvviiiiiiiiiiiiiiiieeeee ettt 41
4.1. Context Switch and Data Transfer Operationsccccoecviieeiniiiiee e 41
4.2. Bit Field Processing OPEeratiOnNsSccceeiiiiiiiiieiiiiiiee e aiiee et e e e e 44
4.3. Cross Context ACCESS OPEIALIONSceiiieeeeiiiiiiiiiieeree e e e e e e e ss e e e e e e e e e s an e eeees 52
4.4, ChecCKSUM AAItION ...oiiiiiiiiiiiiiiee e et e e e st e e e s st ee e e s srbaeeeeaans 53
4.5. LX8000 Instruction Summary and ENCOAINGuuuuvuimiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeinnns 54
4.5.1. LX8000 INStruCtion FOIMALScccoiiiiiiiiiiiiiiieie et 56
4.5.2. LOBA FOMMALS ...ueiiiiiiiiiiiiie ettt e ettt e e e e e e s e s st e e e e e aaeeeesannnnnes 57
4.5.3. Write DeSCriptor FOIMALScoicuuiiiiiiiiiiee et 57
4.5.4. Context, Checksum and Bit Field FOrmatsccccocoiiiiiiiiniiieee e 58
4.55. Cross Context MOVE FOIMALccuuiiiiiiiiiieeeeie it 59
4.5.6. Lexra-Coprocessor0 Register Access INSIrUCtioNSc.evveveeeieeeeniiiiiiiiinnen. 59
4.5.7. Lexra SUBOP Bit ENCOAINGSccuuviiiiiiiiiiaeee et 60
5. LX8000 LOCAI MEMOKIY ..cevieiiiiiiieeeeeeeeeee ettt 61
5.1, LOCAl MEMOIY OVEIVIEWciiiiiiiiiieiiiiiitee ittt ee e e ettt e ettt e e et e e e s eabbe e e e s snbbs e e e e s annaneee s 61
5.2. Cache Control REQISIEr: CCTL iiiicuiiiiiiiiiiee e e e ettt e e e e e e e s e s s e e e e e e e e e e e e nanrneeeees 61
5.3. Instruction Memory (IMEM) LMIcooiiiiiiieeece et r e e 62
5.4. Scratch Pad Data Memory (DMEM) LMIoooviiiiiiiiiiiiiiie s 63
6. LXB000 COoproCesSOr INEITACEuuuuuuruuiiiiiiiiiiiiiiiiiiirerieerrrrrerrrerrrrrrre—————————. 65
6.1. Attaching a Coprocessor Using the Coprocessor Interface (Cl)ccoccoveeiiiiineennnnnn, 65
6.2. Coprocessor Interface (Cl) SIGNAISoocuuiiiiiiiiiiie e 65
6.3. Coprocessor Write€ OPEIrAtiONScciiieeeiiiiiiiieiieiieeeee e e e s s sssr e e e e e e e e s s s s e ereeaaeeaeen 66
6.4. Coprocessor Read OPEratiONScccuvriiiiirieeerieiiiiiiereeeereeee e e s s s sssennrerrrereeaeeessaannnreneees 66
6.5. Coprocessor Interface and Pipeline Stagescccuuvviiiiiiiiiiiiii e 67
6.5.1. PiIpeline HOIASoooiiiiiii e 67
6.5.2. Pipeline INValidationcoeiiiiiiiiiieiiiiiee e 67
I, €210 1010 I I I S 69
4% R [11 (o To [1 Tex 1T o PR PPPP 69
7.2, OVEIVIEW ...eteiiee ittt ettt e e sttt et e e ettt e e e s sa bttt e e e ot be e e e e e aabb e e e e e et be e e e e s et baeeeessnbbeeeeeannbaeeeenanes 69
7.2.1. IEEE JTAG-SPECIfiC PINOULccoiiiiiiiiiiiiii e 70
7.3, SiNQGIE ProCESSOr PC TIACE ...eeeiiiiiieeeiiiiiititie ettt ettt e e e e e e e s e sbbb e e e e e e e e e e e e aananes 71
7.3.1. PC Trace DCLK - Debug CIOCKccciiiiiiieiiiiiiieeiiiieee et 71
7.3.2. PC Trace PCST - Program Counter Status Tracecccceeeeeeeeiiiieiieieeeeeeinnns 71
7.3.3. PC Trace TPC - Target Program COUNTEIuueiiiininieieieeeeeeeeeeeneeeeeeeeeenenns 71
7.3.4. Single-Processor PC Trace PiNOULcccceviiiieei e 72
7.3.5. Vectored Interrupts and PC TraCecceeiieiiiiiiiiiiiiiiiiieee e 72
7.3.6. Demultiplexing of TDO and TDI During PC Tracecccccuvviieeeieneeannnnns 73
7.4, MUIIPrOCESSOI EJTAG ...ooiiiiiiiiie ittt e st e e b e e e e ane 73
7.4.1. Connectivity REQUIFEMENTScuuiiiiiiiiiiii et 73
7.4.2. Multiprocessor PC Trace Using Internal Trace Bufferscccccvvvvveennn.n. 73
8. NetVortex Crossbar INtErCONNECTuuuuuiiiiiiiiiiiiiiiiiiiiieiiieeiee et eeeeeeeeeeas 75
8.1. Processor-to-DeviCe Pathseeiiiiiiiiiii e 76

Lexra Proprietary & Confidential -4- Release 1.9

LEN% April 2, 2001 NetVortex

8.2. Device-10-Processor Pathsuuiiiiiiiiiiii e 78
8.3. Bandwidth @nd LAtENCYcoooiiiiiiiiiiiiiiiei ettt a e 79
8.4. Crosshar Port CONfIQUIALIONoocuuiiiiiiiiiiie ettt ee e 81
8.5, AJAreSS DECOUING ...uvveiiiiiiiiiite ittt ettt e et e et e e e et e e e e aabe e e e e e nanneas 81
8.5.1. Memory Mapped DEVICESccccuuriiiiiiiiee e e e ettt e et e e e e e e e e e e e e e e e 82
8.5.2. Write DESCHPLOr DEVICESceeeeiiiciiiiieeie e e et e e e e e e rear e e e e e e e 82
8.5.3. Address Error HANAIiNGuvueeiiiiiiiieie e 82
ST T Y 1 o] 1 - Vi [0 [PPSO PPPRTTTT 83
8.7. ASYNCIIoNOUS INTEITACEeiiiieiiieie e e 83
8.8, QUEUE DEPLNSeiiiiiiiiiie ettt e 83.........
8.9. INSrUCtioN RAM Fillooiiiiiiiiie e 83
8.10. Device Management INLEITACEcevvieeiiiiiiiieee e e e 83
8.10.1. DMI Read and Write Request INterfaceccccoeiiiiiiiiiiiiiieiieeeie 83
8.10.2. DMI Request WaVETOIMScoiii ittt 85
8.10.3. DMI Split Read Data INtEIfacecoocviiiiiiiiiiiieeiiiie e 86
8.10.4. DMI Read Data WaVvefOrmMScccuuiiiiiiieee et e e e e 87
8.11. Direct FIFO Interface for DEVICESccuuiiiiiiiiiiieiiiieee ettt 88
8.11.1. Device ReqUESE INTEITACEccovveeiiiiiieeee e 89
8.11.2. Device Request WaVefOrmMS ...t 90
8.11.3. Device Read Data INterfaceoooiuiiiiiiiiiiiieei e 91
8.11.4. Device Read Data WavefOrmsoooccuiiiiiiiiiieee e 92
9. NetVortex Test and Set ENQINE ... eeereerreereesreeereesseeeeee. 95
9.1. SemMaphore AAAreSSINGccccuvvriiiiiiiie e e e e e s e e e e e e e e e s e s s e e e e aeeeaaen 95
9.2. Single Word Read — BasiC TeSt and Setcccceviieieeiiiiiiiiiiiieireee e e 95
9.3. Single Word Split-Read — (Enqueue and) Wait for Semaphore Freeccccceeeee. 95
9.4. Single Word Write — (Dequeue Wait or) Clear Semaphorecccccoviiiiiiiieeennnnenn. 95
9.5. RAM Requirements for Semaphore QUEUESccuiviiiiiiiiieiiiiiie e 96
9.6. Semaphore Usage for Critical Code SECHONceeevviiiiiiiiiiiiieieeee e 96
9.7. Semaphore Usage for Cross Processor Wait and POStcccccvvveieiieee i, 97
LSS T [0111 F= 1T 1T PSSP 98
10. NetVortex Block Transfer SUDSYSIEMccuiiiiiiiiiiiii e 929
FO.1. OVEIVIEBW ...ttt ettt e e oo oottt ettt e e e e e e e e o e ab e b bttt e e e e e e e e e e e e snnbabbeeeeaaaaaaaens 99
10.2. Block Transfer Buffers and Transfer DESCIHPLOIScoccveveeiriiieieeniiiiiee e 100
10.3. Example TranSaction FIOWcc.eeoiiiiiiiiiiiiiiiiee et 102
10.4. Detailed Description of Block Transfer MOAUIEScccveeeiiiiiiiiiiiiiieeieee e 103
10.4.1. Block Transfer ENQINEccccciiiiiiiiieei it ee e e s e e e e e e e e e e snnnnes 103
10.4.2. Rx and Tx Block Transfer Controllers ... 104
10.4.3. Utopia Level 4 Rx and TX INtErfacesccccuveiiiiiiiiiniiiiiiiiieiieee e 105
Appendix A.NetVortex Lconfig FOrMS ..., 107
N I [o1 1o o {1] 1T o S 107
A.2. Packet ProCeSSOr UNILueeiiiiiiiiiies ettt st 107
A.3. Four Processor Tile with Level 1 CroSSharcccccveviiiiiie e 107
A.4. Memory-Mapped CroSShar DEVICEcccoiiiiiiiiiiiiieii et 108
A.5. Write-Descriptor CroSShar DEVICEcoooieiiiiiiiiiiiieiie et 108
A.6. Testand Set Engine CrosSshar DEVICEc..eeviiiiiiiiiiiiiieie e 109
A.7. NetVortex System with Level 2 CroSShar ... 109
A8, GENEIAl FOMM NOES ...ooiiiiiiiiie ittt e s st e e e s nbee e e e e nneees 109
A.9. Example NetVOortex FOIM ... e e e e e e e e e e eae e 110
A.10. Configuration Options for the LX8000 Packet ProCessorcccccceeviiniiiiiiiieeeenenenn. 112
A.11. Configuration Options for Memory-Mapped DeVICESccccueeieiiiieaiiiiiiiiiiiiieeeeeeennn 113

Lexra Proprietary & Confidential -5- Release 1.9

LEK'% April 2, 2001 NetVortex
A.12. Configuration Options for the Test & Set ENQINEcovviiiiiiiiiiiiiiiiieeeee e 113
A.13. Configuration Options for Write-Descriptor DeVICESccccvuviiiieiiiiaeieiiiiiiieeeee 114
A.14. Configuration Options for the CroSShar ... 114

Appendix B.NetVortex Port DESCIPLIONSuuuiviieiiiiiiieiiieeieeeeeeeeeeeeeeeeeeereeereeeeeeeees 115
Appendix C. LX8000 PIpeling StallSccueeiiiiiiiiiiiiiee i 127
C.1. Stall DEfINILIONS ..eeeiiiiiiie ettt e e e e b e e e s b e e e e enneee 127
(O [o153 { W [ox 1T o I €1 o 1U]] o 1= PSRRI 127
C.3. Non-Sequential Program Flow Issue Stalloovviiiiiiiiiiii e 127
C.4. Load SUDWOIT SEAIloeoiiiiiiiiiie e e e e e 128
C.5. StOre-LOad StAlleveiiiiiiiiee e e e e 128
C.6. StoreAny - StoreSUbWOrd Stallcoouiiiiiiiiii e 128
C.7. Load/Store Ops Stall MALIXccoeieiieiiiiiieieiee e e s es s ee e e e e e e e s s sssaenreneereeeeeeeesessnnnnnes 128
C.8. MVECZ SHaAll oottt e et et e e s sttt e e e s bbb e e e e s abaeeeeean 128
(O3 T |1V 10] = | RSP 128
C.10. IMMU ISSUE STaIlvviiieeiiiiiie ettt e e e e et e e e e e snrae e e e e snnaeeaeeennens 129
C.11. 1caChE MISS Sl ..ot e e e e e e e e e e annes 129
C.12. DCAChE MISS Stall ..ot e e e e e e e e s s ee e e e e e e e e e eeannnns 129
C.13. Pipeline Timing Diagrams for StallSccoooiiiiiiiieiiiie e 129
C.13.1. Non-Sequential Program Flow Issue Stallsc..cooecviiiieiiieeee e, 129
C.13.2. Load SUBWOIM Stallccooiiiiiiiiiiieeeee e 130
C.13.3. StOre-Load Stallccooiiiiiiiiiiie e 130
C.13.4. StoreAny - Store SUbWOrd Stallcceeeiiiiiiiiiiiii e 130
C.13.5. MVCZ SHalleeveiiieeceiee ettt e e e e s ee s 130
C.13.6. LWECZ SHAII ..veeeeeiiiiiiee ettt ettt 130
C.13.7. Icache MiISS Stallcoouiiiiiiiiiii e 131
C.13.8. DCAChe MISS SHallcooiiiiiiiiiiiie e 131

Lexra Proprietary & Confidential -6- Release 1.9

LEN% April 2, 2001 NetVortex

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

Table 10:
Table 11:
Table 12:
Table 13:
Table 14:
Table 15:
Table 16:
Table 17:
Table 18:
Table 19:
Table 20:
Table 21:
Table 22:
Table 23:
Table 24:
Table 25:
Table 26:
Table 27:
Table 28:
Table 29:
Table 30:
Table 31:
Table 32:
Table 33:
Table 35:
Table 36:
Table 37:
Table 38:
Table 39:
Table 40:
Table 41:
Table 42:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:

List of Tables

EDA TOOI SUPPOIT ...eeeeeiieiee ettt e e e e e e e e e e e s snneenee 18
(08 =0 S =011 (= PSPPSR 21
Context Status Register Detall............cooeeeiiiiiiiiieeeeeee e 23
SCREAUIBT POITS ...t e e e e e e as 27
Prioritized Interrupt EXCepPLion VECIOIS..........uuiiiiiiiiiieeieiiiiie e 30
ALU INSTIUCTIONS ..eeiiiiieeeie ittt e e e et e e e e e e e e e snenbbeeeeees 31
Load and Store INSIIUCLIONSoooiiiiiiiiiiiieei et e e e e e e 32
Conditional MOVE INSIIUCLIONSeiiiiiiiiiiiiiiie e 33
Branch and JUmMp INSTIUCHIONS........cooiiiiiiiiiieiieee e 33
CONLIOl INSTIIUCTIONS ...ttt e e e e e e e e e e 34
COProCESSON INSIIUCTIONS.eeeiiiiiee ettt e e e e e e e e e e as 35
Custom Engine Interface OPerations.............cceiiiiiiiiiiiiiiiiiiiieeee e 36
Custom Engine Interface SignalS........ccoooveiiiiiie i 36
SMMU AdAreSS MapPPINGg ... ceeieeee ettt et e e e e e e e eeeaeaeeeeaeaaan 37
LiSt Of EXCEPLIONSeeeeiiieeeeeiiiiette ettt ettt e et e e e e e e e e e e s sannbebee e 38
Context SWItching INSIFUCIONS..........cooiiiiirieeeeeerr e e e e e e e e, 41
Bit Field Processing INStrUCLIONSccooiiiiiiiiieeeeeeee e 45
Hash Instruction Key Bit Definition..............ooviviiiiiiiiccre e 50
Cross Context ACCESS INSITUCHONSoooiiiiiiiiiiiiiieie e 52
Checksum Addition INSIIUCHONSuuiiiiiiiiiieeeie e 53
INSEIUCLION SUMIMAIY....uiiiiiiiieieie e e e e e e e e e e e e e e aeaaaaaeaeaeeees 54
Lexra SUBOP Bit ENCOAINGuuvuiiiiiiiiiii i 60
Local Memory Interface MOAUIEScooiiiiiiiiiiii e 61
IMEM CoNfIQUIAtIONS.covviieiiiiiiiiciees e e e e e et e e 62
IMEM RAM INTEITACES. ...ttt e 63
DMEM CoNfigUratioNSuuuuiiiiiiiiiieie e i s e e e e e e e et e e e e e e e 63
DMEM RAM INLEITACES ...ttt e 64
Coprocessor Interface SIgNalSeeeiiiiiiiiiiii e 65
EITAG PINOUL.....euiiiiiiiieeeii ettt e e e e e e e e e e ab e b e eeeeas 70
EJTAG AC CharaCteriStiCSuuuuiiiiiieiieeeeei ittt e e e e e 70
EJTAG Synthesis CONSLIAINTS........c.uvuiiiiiiiiiiiiiieis e s e e e e e e e e e eee e e e e e e e eeeeeeeaerereennnnnanaaa 70
Single-Processor PC Trace PiNOUL.cciiiiiiii i 72
Single-Processor PC Trace AC CharacteristiCs..........c.coovvvivivevevvveiiiieeeee e, 72
DMI REQUESE SIGNAISeeeieeeieeee ettt e e e e e e e e e e 84
DMI Split Read Data SigNalS..........oooiiiiiiiiiiiieieee e 86
Device REqUESE SIGNAISueeiiiiiiiiiee e 89
Device Read Data SignalsS..........ccoooeiiiiiiiiiii e e e 91
Semaphore Engine RAM ReqUIrEMENTS.......ccooiiiiiiiiiiiiiiiiiiieeee e 96
BIOCK Transfer DESCHPLOLcoiiiieiieeeee et 101
BTC Reserved Fields in Transfer Buffer............cccooiieeee, 102
RECEIVE POIt SIGNAISccieeieeeeeei et 105
Lconfig BIOCK TYPES ...ttt e e e e e 107
Memory Mapped Device ADdress Masks............eeeeviiiiiiiiiiiiiiiiiiieee e 108
NetVortex Top Level POrt SUMMANYoooiuiiiiiiiiiieiee e 115
LX8000 Single-Processor POrt SUMMAIYuuuuuuiiuiiiiiiiieieieieeeeeeeeeeeaeeeeeeeenennnns 119
Instruction Groupings For Stall Definition ..o 127
Load/Store Ops Stall MatriXuveeiieiiiieeeiiee e 128

Lexra Proprietary & Confidential -7- Release 1.9

LEN% April 2, 2001 NetVortex

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:

List of Figures

NetVortex LX8000 ProCeSSOr OVEIVIEWccuieeeieiiiiiiiiiiieeeeaeae e e e siiisieeeeeeeaae e 13
NetVorteX SYStemM OVEIVIEWcccoeii e e e e e e e e e e e e e e e e aaeeaeaens 14
Processor Core Module Partitioning............coovvviiiiiiiiiiiiiiiiiiis e e e e e e aeeeee e e 19
Context Associated REQISIEISccoiiiiiiiiieeeeeee e e e e e e e e e e e aaaaaan 22
Insert and Extract Operations (Straddle Case)...........ceveieiiiiiiiiiiiiiiiieeieeeeeeeiiee 45
Packet Field Compaction with Variable Alignment...........cccccccciiiiiiiiniiiiieeeee. 49
Construction of Chained TAP controllers for Multiprocessor EJTAG 73
Crossbar for 16 Processors and DMI t0 6 DEeVICES..........cccuvuveeiieiieeeiiiiiiiiiiieeee e 77
Crossbar for 6 Devices to 16 Processors and DMI...........cccuvveiviiiiiiiiniiiiiiiiieeeee. 79
Processor to Device Transaction FIOWcciiiiiiiiiiiiieeee e 80
Device to Processor Transaction FIOWcciiiiiiiiiiiieeee e 81
Single DMI Request Without Grant Delay...........c.c.uueeeeiiiiiiiiiiiiiiieeee e 85
Single DMI Request With Grant Delay ... 86
Back to Back DMI Requests Without Delay ..., 86
Multiple Back to Back DMI Requests With Grant Delayoooocvviieeeiiiiennnnnn. 86
Single DMI Read Data Response Without Delay ..o 87
Single DMI Read Data Response With Busy Delay..........ccccccoeeiiiiiiiiiiiiiccineeeen, 88
Back to Back DMI Read Data Response Without Delaycccveeeeiiieiiiiniiinns 88
Back to Back DMI Read Data Response With Busy Delayc..ccccoviiiiiiiienneen. 88
Single ReQUESE ENQUEUEuuiiiiiiiiieeee ettt 90
Back to Back ReqUESt ENQUEUEc.uuiiiiiiiiieeee et 90
Single Split Read RETUIM..........iiiiiiii e 92
RADEQUEUE DEIAY ...ttt e e e e e e e e e e 92
Back to Back Split Read Responses without RdDequeue Delay...........ccccccoeevuneenee 93
Back to Back Split Read Responses with RdDequeue Delay.............ccccvveeeeereeenn. 93
Organization of the Block Transfer Controller.............ccooovvviviiiiiccccceeee e, 100

Lexra Proprietary & Confidential -8- Release 1.9

LEM% April 2, 2001 NetVortex

1. NetVortex Product Overview

1.1.

Introduction

This data sheet describes NetVortex, a scalable, multi-processor architecture developed specifically for use in
network communications systems. NetVortex employs Lexra’s LX8000 processor, and incorporates
significant architectural features to support emerging network communications applications. A multi-
processor IC based on NetVortex can perform IP routing and classification tasks at data rates up to OC-192
(30M packets/second).

The LX8000 is based on Lexra’s LX4189 processor, a complete MIPS R3000-class processor subsystem
developed for ease of integration (See Figure 1 on page 13). The major subsystems are: the CPU core, Local
Memory Interfaces (LMI) and LBus Controller (LBC). The technology includes an optional interface to a
customer-defined Coprocessor (ClI2) and optional customer extensions to the MIPS ISA (Custom Engine).
The local instruction memories and data memories may include caches and fixed RAM; the sizes are
configurable. The figure also highlights the LX8000 multi-context register file to support fast context
switching. Additional LX8000 extensions include new bit-field operations for efficient packet header
processing, and a Block Transfer Engine (BTE) attached to a dedicated RAM port, that is used in NetVortex
for background data transfers.

Network communications systems are characterized by demanding, real-time performance requirements.
Typically, system designers have addressed these requirements with custom ASICs, off-the-shelf processors,
and PLDs. The explosive growth in the size and bandwidth of the Internet has recently stimulated
semiconductor companies to develop a new type of product, called a Network Processor Unit (NPU), to serve
these applications. These ICs incorporate multiple programmable cores and specialized peripherals.
Compared to ASIC development, NPUs offer the system designer faster time-to-market and flexibility to
implement differentiated services in software; compared to general-purpose, off-the-shelf components, NPUs
offer the promise of lower cost and superior performance through architectural specialization. Net\Vortex is a
scalable multi-processor with the specialized architectural features needed for high-performance packet
processing for a wide variety of new products.

The time required to process packets for IP routing and classification is dominated by long latency
operations, such as table lookups from large memories and buffer accesses. However, a distinguishing feature
of network communications systems is that subsequent packets are readily available for independent
processing. Therefore, a fast context switch can be exploited to hide the memory latency. NetVortex includes
a configurable number (1-8) of general register sets and program counters, along with instructions for fast
context switching. This enables multiple software threads to efficiently execute on a single processor. A
thread is de-activated under software control either (i) unconditionally, (i) when a load with context switch
instruction is coded for a long latency load, or (iii) when a command is written to a shared system device.

Following a context switch, the CPU activates a new thread from the pool of ready threads. The context
switch does not introduce stall cycles. Because the new thread has an independent general register set, it can
quickly resume processing. To avoid stalling the new thread while the previous thread's data transfer
completes, the LX8000 incorporates a Block Transfer Engine (BTE) connected to each processor’s data
memory for the transfer of packet data. In addition, the memory system is non-blocking, permitting local
accesses and cache hits to operate in parallel with one outstanding global access per context. With this
architecture, context switches may be used frequently to achieve optimal performance.

Packet processing also requires frequent access to bit-fields in the packet header that are not byte-aligned. For
this reason, Net\ortex has extended the MIPS Instruction Set Architecture (ISA) to include a complete set of
bit-field operations for field extract, insert, set and clear. Deterministic allocation of real-time is another
important problem in network communications software. This problem is compounded by multi-processing.
For this reason, the LX8000’s configuration options include dedicated (uncached) local instruction and data
memories for real-time critical instructions and data in order to avoid cache miss penalties.

Lexra Proprietary & Confidential -9- Release 1.9

LEW% April 2, 2001 NetVortex

A typical system design based on NetVortex is illustrated in Figure 2 on page 14, which shows 16 processors,
that include local instruction and data storage (not shown). A high bandwidth crossbar connects the

processors to shared devices such as TCAMs, SRAMs, and custom logic. A Device Management Interface
allows an application-specific management processor to access the shared devices.

NetVortex provides two optional peripherals: the Test and Set Engine and the Block Transfer Controller. The
Test and Set Engine attaches to the crossbar and supports up to 32 unique semaphores. These semaphores
may be used to control access to resources shared among any of the processors and contexts that have access
to the semaphores. The Block Transfer Controller is connected to a dedicated port of each processor’s data
memory and transfers packet data over dedicated busses to external ports. IC designs using NetVortex can
cost-effectively support a wide spectrum of network communications systems.

NetVortex employs Lexra’s LX8000 packet processor, which is an extension Lexra’s LX4189 processor. The
LX8000 incorporates the LX4189's 6-stage RISC pipeline. As a result NetVortex can achieve high system
clock performance in a portable cell-based design. The 6-stage pipeline also decouples customer-
configurable RAMs from critical paths internal to the core.

Because the LX8000 packet processor executes the MIPS | instructlom seitle variety of third party
software tools are available including compilers, operating systems, debuggers and in-circuit emulators.
Lexra also supplies assembler extensions and a cycle accurate Instruction Set Simulator (ISS). Programmers
may use “off-the-shelf’ C compilers for initial coding, then replace performance critical code with optimized
assembler code.

This data sheet describes the base LX4189 processor as well as LX8000 extensions to the LX4189. The
remaining sections of this data sheet describe: hardware and instructions that support context switching
(Section 2); the general RISC programming model (Section 3); LX8000 instruction extensions, including
instructions for context switch, and bit-field processing (Section 4); processor memory interfaces (Section 5);
coprocessor interfaces (Section 6); embedded debug support (Section 7); the NetVortex crossbar interconnect
between processors and shared devices, and the device interface protocol. (Section 8); the optional NetVortex
Test and Set Engine (Section 9); and the optional NetVortex Block Transfer Controller (Section 10)

1.2. Key Features

» Complete Packet Processor Subsystem

» Executes MIPS | ISA (except unaligned loads, stores).

» Extensive third-party tool support.

» High-performance 6-stage pipeline.

» Local instruction memory, configurable sizes.

* Local data memory, configurable sizes.

* Memory interface logic included.

» Crossbar interface to access system devices.

» Split read transactions over crossbar interface.

» Optional customer-defined coprocessor.

» Optional customer-defined instruction extensions
support EJTAG Draft 2.0 with extensions for multi-thread debugging.

1. Unaligned load and store instructions are not supported in hardware or software.

Lexra Proprietary & Confidential -10- Release 1.9

LEW% April 2, 2001 NetVortex

» High-Performance Context Switch

» Processor provides 1-8 contexts (the number is customer-configurable).

* Independent program counter, status, and general registers for each context.

* No wasted cycles for context switch.

» Context switch initiated by program.

» Thread re-activation based on completion of data transfer, asynchronous external
events or program control.

* Block Transfer Controller

» Performs block transfer between processors and external interfaces.

* Supports one or two Utopia-4 receive/transmit pairs, at 415 MHz, 32 bits.
» Fully integrated with each processor’s local data RAM.

* Can handle up to 4 simultaneously active transfers.

* Internal busses move up to 256 bits of data per cycle.

* Internal data bandwidth is 115 Gbits/s at 450 MHz.

* Maintains packet ordering.

» Bit-Field Instructions

» Single-cycle extract, set, clear.
» Two-cycle extract-and-insert, with source fields that may span two registers.
» Dual 16-bit ones complement add for checksum.

* Supports up to 16 LXB8000 Packet Processing Engines

» High-speed RISC CPUs optimized for packet processing applications.
* A l6-processor system provides a performance of 7200 MIPS at 450 MHz.
» Can process all seven networking protocol layers.

e Crossbar Bus Architecture

» High bandwidth transfer paths between processors and
shared devices such as SRAMs and TCAMSs.

» 28.8 Ghits/s of read bandwidth and 28.8 Gbits/s of
write bandwidth per device at 450 MHz.

» 28.8 Ghits/s of read bandwidth and 14.4 Gbits/s of
write bandwidth per processor at 450 MHz.

e The Test & Set Engine

» Optional crossbar-attached device.
» Supplies up to 32 unigue semaphores.
» Controls access to shared resources.

e Portable RTL Model

* Available as a synthesizable RTL.
» Portable to any 0.26n, 0.18im or 0.1%m
logic and SRAM process.
* Foundry partners include IBM, TSMC, and UMC.

Lexra Proprietary & Confidential -11- Release 1.9

LEN% April 2, 2001 NetVortex

* Optional Hard Macro Model

» Sizteen processors, each with 4 contexts, 16KB IMEM, 16KB DMEM.

* Block Transfer Controller.

* TSMC 0.1%um. results (typical process, worst case operating conditions):
Clock: 450 MHz
Area: 64 mm
Power: 6.8 W

» Easy ASIC Design

* Single phase clocking.

» Fully synchronous design.

» Easy to interface system bus protocol.
» Supports popular EDA tools.

» Easy RTL Customization
» User-configurable local memory, reset method, clock distribution.
» User-configurable EJTAG breakpoints.
» Over 30 other configuration options.
» Interfaces for adding application-specific instructions.

» Ultimate Scalability

» Asingle LX8000 processor for a SOHO VPN (for example)
» Upto 16 LX8000 processors for an OC-192 router.

» EJTAG Debug

* Optional extension the EJTAG 2.0.0 specification
» Supports multi-processor and multi-context environment for on-chip debug.

» Development Tools

» Available from third party suppliers supporting the MIPS architecture
* Includes industry leaders Green Hills Software, Embedded Performance Inc., and
Wind River Systems.

1.3. LX8000 Processor Overview

The LX8000 is a RISC processor that executes the MIPS-I instructibaleeg with Lexra’s instruction set
extensions. However, the clocking, pipeline structure, pin-out, and memory interfaces have all been designed
by Lexra to reflect system-on-silicon design needs, deep sub-micron process technology, as well as design
methodology advances.

1. The MIPS unaligned load and store instructions (LWL, LWR, SWL, SWR) are not supported.

Lexra Proprietary & Confidential -12- Release 1.9

LEW% April 2, 2001 NetVortex

The figure below shows the structure of the LX8000 processor, as used in Net\ortex.

I RAM |
] - Instruction Bus (Addr, Data,
:C " | «—] Lx8000 [* (» Inst LM| |(«—»
'El:\Zi?]r:’ CEl< o LBCle—s S>é3tem
I l ore us
| | > Data Bus (Addr, Data, Ctl) Data LMI l
. < RN
| Data |
R ¢¢j¢ | ram 7 BTE
L — a r= === - = L - —a
denotes customer logic 1 Coprocesson l T

L e e e = — 4

TxBus RxBus

Figure 1: NetVortex LX8000 Processor Overview

MIPS ISA Execution. The LX8000 supports the MIPS | programming model. Two source operands can be
supplied and one destination update performed per cycle. The second operand is either a register or 16-bit
immediate. The instruction set includes a wide selection of ALU operations executed by the RALU, Lexra’s
proprietary register based ALU. The RALU also generates memory addresses for 8-bit, 16-bit, and 32-bit
register loads from (stores to) memory by adding a register base to an immediate offset. Branches are based
on comparisons between registers, rather than flags, and are therefore easy to relocate. Optional links
following jump or branch instructions assist with subroutine programming.

The MIPS unaligned load and store instructions are not supported, because they represent poor price/
performance trade-off for embedded applications. Their absence does not affect the software programming
model.

ISA Extensions for Network ProcessinglLexra has added 32 new instructions to the LX8000 to optimize

for high performance packet processing. Bit-field operations are included to accelerate lookup-key formation
used in packet classification. Specialized hash functions, table lookup instructions and one’s-complement
addition are also included.

Many of the new instructions are used to facilitate high-speed data movement, fundamental to network
communications. 64-bits can be loaded from local data RAM into a general register pair in a single cycle. Up
to 128-bits can be transferred from shared memory by a single instruction. The Lexra extensions also support
atomic read-modify-write operations on the shared memories. Latencies in access to shared memory, on-chip
or off-chip, can be hidden using a zero-overhead switch between the eight independent hardware contexts.

Pipeline. LX8000 instructions are executed by a six-stage pipeline that has been designed so that all
transactions internal to the LX8000, as well as at the interfaces, occur on the positive edge of the processor
clock. Two-phase clocks are not used.

Context Switching. The LX8000 incorporates up to eight independent 32 x 32b general register sets called
contexts. Execution can switch between independent tasks, called threads. This context switch is performed
with no wasted cycles and prevents stalls while waiting for data from on-chip or off-chip shared resources.
Context switches occur under program control when data is loaded from shared resources. A background
load of 32-bits, 64-bits or 128-bits from a shared resource can be accomplished with a single Load
instruction.

A special class of instructions, called Write Descriptor (WD), allow a command or data to be directed to a
shared resource, including a request for up to 128 bits of return data. This allows shared devices to efficiently
perform operations that atomically examine and modify memory state. The processor performs the WD
operation in a single instruction cycle without stalls by using a context switch. When a context switch occurs,

Lexra Proprietary & Confidential -13- Release 1.9

LEdasA

April 2, 2001 NetVortex

the program counter of the suspended thread is stored in a CPO register while execution switches to another
thread. The next thread is automatically selected from the pool of ready-to-run threads of equal priority, using
a windowed round-robin algorithm.

Exception Handling. The MIPS R3000 exception handling model is supported. Exceptions include both
instruction-synchronousaps as well as hardware and softwaneerrupts. The STATUS register controls the
interrupt mask and operating mode. Exceptions are prioritized. When an exception is taken, control is
transferred to the exception vector, the current instruction address is saved in the EPC register, and the
exception source is identified in the CAUSE register. A user program located at the exception vector identifies
the cause of the exception, and transfers control to the application-specific handler. In the event of an address
error exception, the BADVADDR holds the failing address.

Coprocessor OperationsThe LX8000 supports 32-hit Coprocessor operations. These include moves to and
from the Coprocessor general registers and control registers (MTCz, MFCz, CTCz, CFCz), Coprocessor
loads and stores (LWCz, SWCz) and branches based on Coprocessor condition flags (BCzT, BCzF). The
Lexra-supplied Coprocessor Interface can support Coprocessor operations in a single cycle, without pipeline
stalls.

Block Transfer Engine. In a NetVortex system, the LX8000 processor includes a dedicated Block Transfer
Engine (BTE) that provides efficient high-bandwidth packet transfer between the processor’s local data RAM
(DMEM) and the NetVortex Utopia-4 interfaces. Software initiates transfers with Write Descriptor
instructions (WD) that pass a transfer descriptor to the BTE. The BTE can hold eight transfer descriptors per
thread, consisting of up to four Rx descriptors and up to four Tx descriptors.

1.4. NetVortex System Overview
The NetVortex system includes up to 16 LX8000 processors, and adds packet transfer pathways, shared
device interfaces and a crossbar to provide high-bandwidth, low-latency communication between the
processors and shared devices.
The figure below shows the structure of the NetVortex system, which uses the LX8000 processor as a
building block.
r_o-o s oo r_— -7 Jcustom; | custom,
. TCAM | | SRAM || SRAM | | o4ic ' 1 ogic |
T T L,,i,,J ,,¢,, _logic.
denotes customer logic ¥ __ __ _V__ _ R S fm— L — o [S
, TCAM | | SRAM | , SRAM | | Custom, | Custom,
S L | /| /| S S) S
EJTAG
Probe < Df,t;ug Crossbar
i
: : : LX8000 3 : : Device
PO|| P1/| P2 --- packet **+| P13 P14 P15 .— Management
processors Interface
— »/RxBTC RxBus)
Utopia-4 TxBus) -~ TxBTC| >
< | TxBTCl< TxBusl Utopia-4
RxBusl Rx BTCl<

Figure 2: NetVortex System Overview

Block Transfer Controllers. The Block Transfer Controllers (BTCs) are responsible for moving data

Lexra Proprietary & Confidential

-14- Release 1.9

LEN% April 2, 2001 NetVortex

1.5.

between each processor’s BTE and the external Utopia-4 Receive (Rx) and Transmit (Tx) ports. The BTC’s
Utopia-4 interfaces operate at 415 MHz and are 32 bits wide.

Crossbar Interconnect. The crossbar operates at 450 MHz and supports simultaneous full duplex data
transfer between the processors and device interfaces. The crossbar provides a sustainable data transfer
bandwidth of 58 Gbits/sec per device interface.

Each processor can pass one 64-bit write or read request to the crossbar every two cycles. Device interfaces
accept write or read requests every cycle, and can source 64 bits of read data every cycle. The crossbar
incorporates queues that are dedicated to each device and processor to prevent head-of-line blocking.
Arbitration is performed by independent per-queue arbiters. Each arbiter implements windowed round-robin
selection. The LX8000 processor context switches are used in a processor to hide the latency of transactions
that are performed over the crossbar.

Shared Device InterfacesThe crossbar connects the processors to shared device interfaces, that in turn
connect to on-chip or off-chip resources. These interfaces are shared among the processors and provide the
bandwidth and flexibility required for a wide spectrum of applications.

Device Management Interface The crossbar’s optional Device Management Interface (DMI) provides a

port for accessing the crossbar devices. This port may be used by a management processor or other
application specific logic.

NetVortex provides excellent price/performance and time-to-market. There are two main approaches which
Lexra has taken to achieve this:

» Deliver simple building blocks outside the processor core to enable system level
customizations such as coprocessors, application specific instructions, memories, and
busses.

» Deliver either a fully synthesizable Verilog source model or fully implemented hardcore
(called SmoothCofté) for popular pure-play foundries.

Section 1.5 describes the building blocks, and Section 1.6 describes the deliverable models.

System Level Building Blocks

The LX8000 processor is designed to easily fit into different target applications. It provides the following
building blocks.

* A simple memory management unit (SMMU).
» An optimized Custom Engine Interface (CEI).
e One optional Coprocessor Interface (CI) per processor.

e A Local Memory Interface (LMI) supports instruction RAM (IMEM) and data RAM
(DMEM).

» A Lexra Bus Controller (LBC) to connect peripheral devices and secondary memaories to
the processor’s own local buses.

NetVortex employs multiple LX8000 processors and additional modules to provide a complete system-on-a-
chip for high performance packet processing.

* Block Transfer Controllers (BTCs) with Utopia Level 4 interfaces coordinate the transfer

Lexra Proprietary & Confidential -15- Release 1.9

LEW% April 2, 2001 NetVortex

of packets between external data path components and internal DMEM.

» Crossbar device interfaces for attachment of application-specific TCAMs, SRAMs, and
network co-processors.

» Device Management Interface (DMI) to for management processor access to shared
devices.

The following sections discuss each of these system building block interfaces.

1.51. SMMU

The LX8000 SMMU is designed for embedded applications using a single address space. Its primary
function is to provide memory protection between user space and kernel space. The SMMU is consistent
with the MIPS address space scheme for User/Kernel modes, mapping, and cached/uncached regions.

1.5.2. Local Memory Interface

The LX8000's Harvard Architecture provides Local Memory Interfaces (LMIs) that support instruction
memory and data memory. Synchronous memory interfaces are employed for all memory blocks. The LMI
block is designed to easily interface with standard memory blocks provided by ASIC vendors or by third-
party library vendors.

1.5.3. Coprocessor Interface

Lexra supplies an optional Coprocessor Interface (CI) for applications requiring this functionality. The
Coprocessor Interface “eavesdrops” on the Instruction bus. If a Coprocessor load (LWCz) or “move to”
(MTCz, CTCz) is decoded, data is passed over the Data Bus into a Cl register, then supplied to the designer-
defined Coprocessor. Similarly, if a Coprocessor store (SWCz) or “move from” (MFCz, CFCz) is decoded,
data is obtained from the Coprocessor and loaded into a Cl register, then transferred onto the Data Bus in the
following cycle. The design interface includes a data bus, five-bit address, and independent read and write
selects for Coprocessor registers and control registers. The LX8000 pipeline and Harvard Architecture permit
single cycle Coprocessor access and transfer. An application-defined Coprocessor condition flag is
synchronized by the CI then passed to the Sequencer for testing in branch instructions.

1.5.4. Custom Engine Interface

The NetVortex includes a Custom Engine Interface (CEIl) that the application may use to extend the MIPS |
ALU opcodes with application-specific or proprietary operations. Similar to the standard ALU, the CEI
supplies the Custom Engine two input 32-bit operands, SRC1 and SRC2. One operand is selected from the
Register File. Depending on the most significant 6 bits of the opcode, the second operand is either selected
from the Register File or is a 16-bit sign-extended immediate. The opcode is locally decoded by the custom
engine, and following execution by the custom engine, the result is returned on the 32-bit result bus to the
LX8000. To support multi-cycle operations, a stall input is included in the interface.

1.5.5. Lexra Bus Controller

The Lexra Bus Controller (LBC) is the interface between the LX8000 and shared devices attached to the
crossbar. On the processor side, the LBC provides a command buffer of configurable depth to prevent
processor stalls. On the crossbar side, the LBC provides a configurable-depth queue for read data.

Lexra Proprietary & Confidential -16- Release 1.9

LEM% April 2, 2001 NetVortex

1.6.

1.5.6. Block Transfer Controllers

The Block Transfer Controllers (BTCs) move data between LX8000 data memory (through the BTE) and the
external Receive (Rx) and Transmit (Tx) ports.

The Rx BTC and Tx BTC modules pass data and control information between the external interfaces and the
internal buses. The external interfaces support Utopia Level 4 at 415 MHz with 32-bit data bus. Each of the
two RxBuses and two TxBuses are 64 bits wide. They provide an aggregate internal transfer bandwidth of
115 Ghits/sec at 450 MHz.

Support for SPI Level 4 Phase 2 is planned for future releases.

1.5.7. Crossbar Device Interfaces

The crossbar connects the processors to shared device interfaces, that in turn connect to on-chip or off-chip
resources such as TCAMs, SRAMs, and network-specific coprocessors. These resources are shared among
the processors and provide the bandwidth and flexibility required for a wide spectrum of applications.

Store instructions, Load instructions, and Write Descriptor (WD) instructions are used to control transactions
between the processors and shared devices. The interfaces support atomic read-modify-write operations,
enabling devices to implement advanced functions such as statistics and metering.

1.5.8. Device Management Interface

The crossbar’s optional Device Management Interface (DMI) provides a port for accessing the crossbar
devices with a management processor or other application specific logic. The DMI provides support for all
crossbar operations to the devices. Through the DMI, a management processor can read or modify the shared
device contents; for instance, to update routing tables or poll statistics memory.

1.5.9. Building Block Integration

The NetVortex configuration scripiconfig, provides a menu of selections for designers to specify building
blocks needed, number of different memory blocks, target speed, and target standard cell library. Next, the
configuration software automatically generates a top level Verilog model, makefiles, and scripts for all steps
of the design flow.

For testability purposes, all building blocks contain scan control signals. The Lexra synthesis scripts include
scan insertion, which allows ATPG testing of the entire NetVortex core.

RTL Core & SmoothCore

Lexra delivers NetVortex as RTL Core and SmoothCore.

RTL Core: For full ASIC designs, the RTL is fully synthesizable and scan-testable Verilog source code, and
may be targeted to any ASIC vendor’s standard cell libraries. In this case, the designer may simply follow the
ASIC vendor’s design flow to ensure proper sign-off. In addition to the Verilog source code and system level
test bench, Lexra provides synthesis scripts as well as floor plan guidelines to maximize the performance of
the Net\ortex.

SmoothCore:For COT designs that are manufactured at popular foundries such as IBM, TSMC, and UMC,

a SmoothCore port is the quickest, lowest cost, and best performance choice. In this case, NetVortex has been
fully implemented and verified as a hard macro. All data path, register file, and interface optimizations have
been performed to ensure the smallest die size and fastest performance possible. Furthermore, there is a scan
based test pattern that provides excellent fault coverage during manufacturing tests.

Lexra Proprietary & Confidential -17- Release 1.9

LBQW—\ April 2, 2001 NetVortex

1.7. EDA Tool Support

Lexra supports mainstream EDA software, so designers do not have to alter their design methodology. The
following is a snapshot of EDA tools currently supported:

Table 1: EDA Tool Support

Design Flow Tools Supported

Simulation Synopsys VCS
Cadence Verilog XL
Cadence NC-Verilog

Synthesis Synopsys Design Compiler
Static Timing Synopsys PrimeTime

DFT Synopsys TetraMax

P&R Avant! Apollo 1l

Lexra Proprietary & Confidential -18- Release 1.9

LEKIW—\ April 2, 2001 NetVortex

2. LX8000 Architecture

2.1. Hardware Architecture

2.1.1. Module Partitioning

The LX8000 processor core includes two major blocks: the RALU (register file and ALU) and the CPO
(Control Processor). The RALU performs ALU operations and generates data addresses while CPO includes
instruction address sequencing, exception processing, and product specific mode control. The RALU and
CPO are loosely-coupled and include their own independent instruction decoders.

Instruction Address and Control

Instructions
CPO l RALU l
S:qcuzrr:(cj:er Multi-Context
Register File
Exception .
Processing Logid N x 32 x 32-bit
r0=0
nglﬁgjn?[n] Flags, Traps T —
and Jump
Address ALU Data Address
PRI] and Control
A
Data .

Figure 3: Processor Core Module Partitioning

Lexra Proprietary & Confidential -19- Release 1.9

LEW% April 2, 2001 NetVortex

2.2.

2.3.

2.1.2. Six Stage Pipeline

The LX8000 has a six stage pipeline:

Stage 1 I Instruction fetch

Stage 2 D Decode

Stage 3 S Source fetch (register file read)

Stage 4 E Execution and address generation

Stage 5 M Memory data select (read data cache store and tags)
Stage 6 w Write back to register file

The six stage pipeline provides a complete processor cycle for the instruction memory, providing ease of use
integrating for allowing use of larger and set-associative memories without degrading cycle time. The six
pipeline stages allow the processor clock speed to scale with current silicon processes.

RALU Data Path

The LX8000 RALU incorporates a multi-context 32x32b four-port register file. One write port is dedicated to
32-bit register file loads from the Data Bus (Loads, MFCz, CFCz - moves from Coprocessor). The remaining
three ports (2r/1w) are used for the other operations, such as ALU operations. In the LX8000, the two write
ports are also used to support 64-bit loads from the Data Bus.

The instruction set includes a wide selection of ALU operations executed by the RALU. In the case of ALU
operations, one operand is a register and the second operand is either a register or 16-bit immediate value.
The immediate value is sign-extended or zero-extended, depending on the operation. Signed adds and
subtracts can generate the arithmetic overflow trap, Ov, which is sampled by CPO.

The RALU also generates the virtual memory addresses for register loads from (stores to) memory by adding
a register base to a sign-extended 16-bit immediate offset. Data address errors genkdaie, thadES trap
flags which are sampled by CPO. The LX8000 empBags=ndian memory addressing.

Branches are based on comparisons between registers, rather than implicit flags, permitting the programmer
more flexibility. From these comparisons, the RALU generteadZ flags for sampling in CPO. Branch or

jump instructions may optionally store in a general purpose register the address of the instruction at the
memory location following the branch delay slot of a jump or a branch which is taken. This register, called
thelink, holds the return address following a subroutine call.

Coprocessor operations permit moves of the general purpose registers to an optional application-specific
Coprocessor. The general purpose registers may also be loaded from the Coprocessor registers. These
transfers occur over the Data Bus, similar to data memory loads and stores.

System Control Copr ocessor (CPO0)

The System Control Coprocessor (CPO) is responsible for instruction address sequencing and exception
processing.

For normal execution, the next instruction address has several potential sources: the increment of the previous
address, a branch address computed using a pc-relative offset, or a jump target address. For jump addresses,
the absolute target can be included in the instruction, or it can be the contents of a general-purpose register
transferred from the RALU.

Branches are assumed (or predicted) to be taken. In the event of prediction failure, two stall cycles are
incurred and the correct address is selected from a special “backup” register. Statistics from several large
programs suggest that these stalls will degrade average LX8000 throughput by several percent. However, the
net effect of the LX8000’s branch prediction on performance is positive because this technigue eliminates

Lexra Proprietary & Confidential -20- Release 1.9

LEN% April 2, 2001 NetVortex

2.4,

certain critical paths and therefore, permits a higher speed system clock.

If an exception occurs, CPO selects one of several hardwired vectors for the next instruction address. The
exception vector depends on the mode and specific trap which occurred. This is described further in
Section 3.4, Exception Processing.

The following registers, which are visible to the programming model, are located in CPO:

Table 2: CPO Registers

CPO register |Number [Function

BADVADDR 8 Holds bad virtual address if address exception error occurs
STATUS 12 Interrupt masks, mode selects

CAUSE 13 Exception cause

EPC 14 Holds address for return after exception handler

PRID 15 Processor ID (read-only) 0x0000c701 for LX8000

CCTL 20 Instruction and data memory control

EPC, STATUS, CAUSE, and BADVADDR are described further in the Section 3.4. PRID is a read-only
register that allows the customer’s software to identify the specific version of the LX8000 that has been
implemented in their product. The CCTL register is a Lexra defined CPO register used to control the
instruction and data memories, as described in Section 5.2, Cache Control Register: CCTL.

The contents of the above registers can be transferred to and from the RALU’s general-purpose register file
using CPO operations. (Unlike registers located in Coprocessors 1-3, they cannot be loaded or stored directly
to data memory.)

High-Performance Context Switch

The LX8000 CPU incorporates multiple, independent register sets calteskts. As a result, execution can

switch between independent tasks, catl@ads, each running in its own context. This switch is called a
context switch. Conventional RISC architectures perform context switching in software. However, packet
processing demands special hardware support to achieve high performance context switching. The LX8000
provides a zero-overhead context switch. That is, an instruction can be execueda@ontext in every

cycle.

2.4.1. New Context Registers

The number of contexts is customer-defined using Lexealdfig utility. One to eight contexts are supported
by the LX8000 RTL (default is one context). Each context includes:

* (32) general registers (r0 - r31)
e (1) 32-hit CXPC (program counter)
* (1) 16-hit CXSTATUS register
The general registers are located in the RALU. The CXPC and CXSTATUS registers are located in CPO. In

addition, a 3-bit register MOVECX is located in CPO, and is accessible with the MTLXCO/MFLXCO
instructions (variants of the MIPS standard MTCO/MFCO instructions). MOVECX holds the encoded

Lexra Proprietary & Confidential -21- Release 1.9

LEN% April 2, 2001 NetVortex

number of the target context for the MFCXC/MTCXC and MFCXG/MTCXG instructions, which can access
the registers of any context. These new registers are illustrated in Figure 4. The currently active context
number is an implicit read-only value that is accessed with the MYCX instruction.

Context Control Registers Multi-context Register File
Context 7 Context 7
CXPC CXSTATUS (RO - R31)
Context 1 Context 1
CXPC CXSTATUS (RO - R31)
Context 0 Context 0
CXPC CXSTATUS (RO - R31)

LXCO Control Register

MOVECX

Figure 4: Context Associated Registers

The MIPS | ISA (except for unaligned Loads and Stores) is fully supported in each context. As a result, the
general register set for each context is fully consistent with the MIPS ISA requirements. For example, r0 is
hard wired to 0 and r31 is an implied “link” for certain branch and jump instructions in every context. Up to
two source registers and one destination register may be specified for an ALU operation, again consistent
with the MIPS programming model.

CXPC holds the 32-bit virtual address of the next instruction to be fetched by the associated thread. The 16-
bit CXSTATUS register indicates whether the thread is waiting for data transfer or I/O events. CXSTATUS
also permits program-assigned priority for thread re-activation.

The CXSTATUS register fields are identified in Table 3. Each field is explained below. The “Rd/Wr” or “Rd
Only” indications apply to access using the MTCXC and MFCXC instructions. The effects of other hardware
and software events on the fields is shown explicitly and explained in the following paragraphs.

The CXSTATUS WAIT-EVENT field provides eight event flags that may be controlled by hardware,
software or a combination of the two. The flags may be set with the CSW instruction or the WD.CSW
instruction. The WD.CSW instruction updates the WAIT-EVENT flags, writes a descriptor to the system bus,
and performs a context switch.

When WAIT-EVENT bits are set with a WD.CSW instruction, the processor initiates an uncachable write to
the system bus, and performs a context switch. All context switches are performed after a one-instruction
delay slot. The WAIT-EVENT bits may be cleared via software from another thread with the POSTCX
instruction, or by hardware through the event signal inputs.

When the target device completes the WD operation, it notifies the processor with a high pulse on the
processor’s corresponding event signal input (eight per thread). The processor then clears the WAIT-EVENT
bit in the context's CXSTATUS register. Software can set more than one WAIT-EVENT bit, which will
require a completion response on each of the corresponding event signal inputs before the thread is ready for

Lexra Proprietary & Confidential -22- Release 1.9

LEN% April 2, 2001 NetVortex

execution.

The optional NetVortex Block Transfer Controller (BTC) is an example of a system bus device that responds
to the WD* family of instructions. When the BTC is present in the NetVortex system configuration, two of
the eight WAIT-EVENT bits are dedicated to monitor its completion signalling.

The CXSTATUS WAIT-LOAD bit indicates that the associated thread is waiting for the completion of a
register load from uncached memory (or a memory-mapped I/O) following execution of LW.CSW (load
word with context switch), LT.CSW (load twinword with context switch) or LQ.CSW (load quadword with
context switch). See Section 2.4.4 for descriptions of these three instructions. WAIT-LOAD is set following
execution of LW.CSW, LT.CSW, LQ.CSW, WDLW.CSW, WDLT.CSW or WDLQ.CSW instructions, and
cleared by the processor when the load data is transferred to the context’s general register file.

The three-bit THREAD-PRIORITY field in CXSTATUS allows thread scheduling with up to eight priorities.
An application specific thread scheduler can utilize thread priorities to fine tune the thread scheduling. See
Section 2.4.4 for details of the thread scheduling hardware interface.

15 8 7 4 3 2 0
Wait-Event 0000 Wait-Ld | Thread-Prio
8 4 1 3

Table 3: Context Status Register Detail

. Width .
Field (Bits) Description
WAIT-EVENT 8 (Rd/Wr) Set with CSW and WD.CSW
instructions. Cleared by external hardware,
or cleared with POSTCX instruction).
Reserved 4 (Rd Only) Reserved.
WAIT-LOAD 1 (Rd/Wr) Set with LW.CSW, LT.CSW,
LQ.CSW, WDLW.CSW, WDLT.CSW and
WDLQ.CSW instructions. Cleared by hard-
ware.
THREAD-PRIORITY 3 (Rd/Wr) Thread priority, for use by optional
custom thread scheduler.
2.4.2. Reset
At reset,
CXSTATUS[15:0] <— 0x0000
CXPC[31:0] <— 0xbfc00000
MOVECX]|2:0] <— 000

The general registers are unaffected by reset.

Thread 0 is activated at reset. All CXPC's are reset to the common MIPS reset vector 0xbfc0000, However,
thread 0 may modify the initial CXPC of the other threads prior to the first context switch.

Lexra Proprietary & Confidential -23- Release 1.9

LEM% April 2, 2001 NetVortex

2.4.3. Determining the Number of Contexts in Software

As described above, the number of contexts that are implemented in a processor is customer defined using
Lexra’slconfig utility. In some cases software will be written that must be adaptable to an unknown number

of contexts. For any non-implemented context, reading the CXSTATUS register will always return a value of
zero. Using the instructions described in Section 2.4.12, Program Access to New Registers, the software can
attempt to write a non-zero value to the CXSTATUS register for each context. If the value zero is returned
when attempting to read back the written value, then that context is not implemented.

2.4.4. |Initiation of Context Switch

A context switch is executed by the CSW instruction and any of the following instructions that include the

.CSW extension:
csw rs context switch, update CXSTATUS from rs
LW.CSW rt, displacement(base) load word from uncached memory
LT.CSW rt, displacement(base) load twinword from uncached memory
LQ.CSW rt, displacement(base) load quadword from uncached memory
WD rs, rt, device write descriptor to device
WD.CSW rs, rt, device write descriptor to device, with context switch
WDLW.CSW rd, rs, rt, device write descriptor, load word reply data
WDLT.CSW rd, rs, rt, device write descriptor, load twin reply data
WDLQ.CSW rd, rs, rt, device write descriptor, load quad reply data

2.4.5. CSW Instruction

The Context Switch (CSW) instruction causes an unconditional context switch, allowing the application
program to execute a context switch under complex, program-defined conditions by alternately executing or
branching around the CSW instruction. Bits 31:24 of the rs register specified in the CSW instruction are
logically OR-ed with the WAIT-EVENT field of CXSTATUS to determine the new WAIT-EVENT field
settings.

2.4.6. LW.CSW, LT.CSW and LQ.CSW Instructions

The Load Word with Context Switch (LW.CSW) instruction is used to initiate a long latency transfer from an
LBus device to a general register. LW.CSW performs a “split transaction” read so that the next thread can
continue to execute while the memory-mapped resource is accessed. Only two clock cycles of system bus
tenure are required to initiate the split read transaction. Following initiation, the bus is available for other use.
The final transfer of the return data uses one cycle of system bus tenure. Loading the final result into the
register file will not stall the currently executing thread unless the thread is executing a load or store
instruction at the time the split read data is returned. In this case, a single cycle stall is required to load the
split read data into the register file. The currently executing thread is otherwise unaffected by the return data.

Similarly, LT.CSW is used to initiate a long latency load of 64-bit data into two consecutively numbered
general registers, starting with the low register address bit equal to 0. Up to two processor stalls can occur
when the 64-bit data is transferred into the register file. LQ.CSW is used to initiate a long latency load of 128-
bit data into four consecutively numbered general registers, starting with the two low order register address
bits equal to 00. Up to four processor stalls can occur when the 128-bit data is transferred into the register file.

In NetVortex, the two-cycle bus tenure needed to issue a split read request applies only to the processor’s
crossbar interface. Within the crossbar and at the device interface, a split read request and 64-bit data return
each require only one cycle of tenure. The return of 128-bit data requires two cycles of tenure at the crossbar
interface.

Lexra Proprietary & Confidential -24- Release 1.9

LEW% April 2, 2001 NetVortex

Following LW.CSW, LT.CSW or LQ.CSW, WAIT-LOAD in CXSTATUS is set.

2.4.7. WD[.CSW] Instructions

The Write Descriptor (WD) instruction forms a 64-bit descriptor from the contents of two general registers,
and writes the descriptor over the system bus interface to the specified device. An optional context switch
may be performed by this instruction, by appending a .CSW suffix to the mnemonic. These instructions are
used to initiate long-latency operations to a shared device. For example, the WD.CSW instruction is used to
start block transfers using the optional Block Transfer Controller supplied with Net\Vortex.

These instructions form the descriptor using rs and rt register contents, as described in detail in Section 4. For
WD.CSW, the upper bits of the descriptor identify the WAIT-EVENT bits to be set. The WD instruction
sources the full 64 bits of the descriptor on the system bus. The 32-bit system bus address of the target device
is formed by concatenating a 24-bit configuration defined constant, the 5-bit device ID from the instruction
opcode and three bits of 0.

2.4.8. WDLW.CSW, WDLT.CSW and WDLQ.CSW Instructions

The WDLW.CSW, WDLT.CSW and WDLQ.CSW instructions provide efficient operation with devices that
return 32, 64 or 128 bits of data. These instructions set the WAIT-LOAD bit in the CXSTATUS register. The
WDLW.CSW writes a 64-bit descriptor to a device, and requests the device to provide a split transaction
word read response. Likewise, the WDLT.CSW (WDLQ.CSW) instruction writes a descriptor and requests
the device to provide a split transaction twinword (quadword) read response. Note that a .CSW suffix is
mandatory for these instructions, because they must always set WAIT-LOAD. These instructions do not set
WAIT-EVENT bits in the CXSTATUS register.

2.4.9. Pipeline

Following execution of a context switch instruction (LW.CSW, LT.CSW, LQ.CSW, WD.CSW, WDLW.CSW,
WDLT.CSW, WDLQ.CSW or CSW), the next instruction executes to completion in the current context,
before the context switch is effective. In other words, the context switch — as a result of pipelining — has an
architectural “delay slot” exposed to the programmer. This delay slot, and restriction on its usage, is
explained below and is generally consistent with similar branch and jump delay slots in the MIPS | ISA.

The delay slot is illustrated below:

thread(i) thread(j)
instn CSWr7 instm
inst n+1 addur3, r2, r1 —> instm+1 addu r7, r6, r3
inst n+2 subu r4, r3, rl inst m+2

In the example, thread(i)’s inst n+1 executes to completion. CXPCi stores the address of inst n+2; the address
where thread(i) resumes when it is later re-activated. After inst n+1 is complete, the next instruction executed
is inst m+1 in thread(j). Of course, thread(i) and thread(j) may execute two completely different tasks; or
execute the same task on different data (in this case the PC'’s will also be unrelated).

A number of restrictions apply to the delay slot instruction:

1. No branch or jump may be coded in the delay slot. A context switch changes program flow,
like the branch or jump. This restriction is thus similar to the MIPS | restriction that no back-
to-back branches or jumps can occur.

2. The register(s) loaded by LW.CSW, LT.CSW, LQ.CSW, WDLW.CSW, WDLT.CSW or
WDLQ.CSW cannot be referenced in the delay slot following the load. A similar restriction
exists for loads in the MIPS | ISA.

Lexra Proprietary & Confidential -25- Release 1.9

LEM% April 2, 2001 NetVortex

2.4.10. New Thread Selection

Following execution of a context switching instruction, the CPU selects the next thread for activation from
the available pool. The available pool consists of those threads for which the CXSTATUS register's WAIT-
EVENT and WAIT-LOAD fields are clear.

If no thread is available, the CPU stalls after executing the context switching instruction and its delay slot.
Stall conditions can arise when all threads initiate long latency processes. For example all threads might
initiate a block transfer within a short period of time such that no transfer has completed when the last thread
performs its context switch.

The CPU logic required to implement the above next thread selection algorithm is pipelined. As a result, the
next thread selection, in the D-Stage of the pipeline (a critical path), can be very simple. With this approach,
the CXSTATUS register sampling used for next thread selection will occur several cycles earlier and may not
include a newly available thread. However, this is not a drawback because event completions for inactive
threads are asynchronous to the current thread’s program. The LX8000's internal thread scheduler (described
in the following paragraphs) is pipelined such that if there is currently no active thread (all threads are have
some wait bit set), it takes two cycles from the time that some thread has all of its Wait bits clear, until that
thread’s CXPC value is driven to the instruction RAM.

The LX8000 processor includes internal thread scheduling hardware. The scheduler examines the
CXSTATUS register of each context to determine which contexts are ready for execution. A context for
which all of the WAIT-EVENT and WAIT-LOAD bits are zero may be selected on the next context switch
operation. The LX8000's internal thread scheduler ignores the THREAD-PRIORITY field of the
CXSTATUS register. It selects the next thread “fairly”. A characteristic of this scheduler is that, if threads are
performing similar types of activities over time, they experience similar selection rates and similar delays in
selection when there are multiple threads ready for execution.

The algorithm employed by the internal scheduler relies on a “window” of ready threads. The following steps
in the algorithm are endlessly repeated:

e Once a window of ready threads has been chosen, no other threads are added to this
window.

« Ifaready thread in the window subsequently has one of its Wait bits turned on, that thread
is removed from the window. Since the window contains only inactive threads, this can
only happen if the currently active thread executes a MTCXC to turn on another thread’s
Wait bit. This is an unusual case because it is expected that MTCXC will only be used
during system initialization.

« One-by-one, as context switches are executed, a thread from the window is selected for the
next context switch. As each context-switch takes effect, the selected thread is removed
from the window. The selection among the threads in the window is not architecturally
defined and application software should not depend on any particular order. The current
implementation selects the highest numbered thread in the window, but this may be
changed in future implementations.

e When the window is (about to) become empty, a new window is created comprising all of
the currently ready threads. (If there are none, this step repeats until there is at least one
ready thread.) When a new non-empty window is obtained, the full cycle of this algorithm
continues as described above.

Any thread that becomes ready will eventually be included in the next new window, and will be selected for
execution. Therefore, this algorithm prevents a ready thread from being starved out of activation by other

Lexra Proprietary & Confidential -26- Release 1.9

LEW% April 2, 2001 NetVortex

threads. The fairness of this algorithm results from the fact that threads which become ready more often are
dispatched more often while those which become ready less often are dispatched less often.

For applications that require more detailed scheduling, the customer may bypass the standard LX8000
scheduler and supply an application specific design that has access to the same per thread information as the
standard scheduler. Such a scheduler may also examine other real time information that is outside the
province of LX8000 architecture.

The following table lists the ports that the processor supplies for each context, which are directly connected to
the standard or application specific scheduler module (the port direction is relative to the processor). An input
to the processor must be driven from a register in the scheduler. Likewise, an output from the processor is
driven from a register within the processor.

Table 4: Scheduler Ports

Processor Port Direction Description

CX_STUSTHWAIT_R[<n>-1:0] output asserted when any wait flag is set in CXSTA-
TUS, where <n> is the number of contexts

CX_STUSTHPRIO_R[<n*3>-1:0] output THREAD-PRIORITY field from CXSTATUS,
where <n> is the number of contexts

CX_THREADACTV_R[<n>-1:0] output 1if thread is active, where <n> is the number
of contexts

EXT_NEXTCNTXRDY_P_R input 1 if scheduler’s next thread selection is valid

EXT_NEXTCNTX_P_R[2:0] input scheduler’s next thread selection

Because the scheduler determines the thread that the processor will activateeshdbietext switch, it can

include register stages in its design to avoid any timing problems. Typically, each processor is connected to its
own local thread scheduler. However, the use of a single scheduling module, which operates on information
from all processors, is not precluded.

It should be noted that the CX_THREADACTV_R signals indicate the current active threackad thfethe

pipeline. Exceptions and mispredicted branches can cause context-switches to be squashed. Furthermore, the
WAIT bit values can be set by context switches or MTCXC instructions, and these changes only take effect at
the end of the pipeline (after any potential exceptions or branches have been resolved). On the other hand, the
EXT_NEXTCNTX_P_R inputs must be used at tigginning of the pipeline to select a new active thread in

case of a potential context switch.

To resolve the discrepancy between the end and beginning of the pipeline, CPO0 inhibits a thread that is active
at any stage of the pipeline from being dispatched for a context switch, regardless of the value of
EXT_NEXTCNTX_P_R. In addition, all threads are inhibited from being dispatched for a context switch
while there is an MTCXC instruction at any stage of the pipeline. This will, on rare occasions, cause no valid
instructions to be sent down the pipeline, but it eliminates the need for the external scheduler to be aware of
the pipeline.

This inhibiting logic also implies that the external scheduler only needs to detect a change in the value of any

CX_THREADACTV_R (from zero to one) to determine that a context switch has actually taken place and a
new thread has been dispatched.

2.4.11. Example Context Switch for Coprocessor Operation

The following example illustrates how an unconditional context switch could be used to allow other threads
to execute while a coprocessor performs a relatively long latency operation on behalf of a thread. The

Lexra Proprietary & Confidential -27 - Release 1.9

LEN% April 2, 2001 NetVortex

example assumes that Coprocessor 2 has been connected to the processor's Coprocessor Interface (Cl),
which is available as part of Lexra’s standard product.

The Coprocessor is assumed to contain a control register ($1) that must contain the context number to which
subsequent Coprocessor instructions apply. Another control register ($2) is used to start the Coprocessor
operation. When the Coprocessor concludes the operation it signals the processor to clear a specific WAIT-
EVENT bit (for the target context) associated with the Coprocessor. This makes the thread ready for dispatch.
Since several threads can use Coprocessor 2, before retrieving the results the current context must again be
stored to the control register ($1). In addition to the MYCX and CSW instructions, the example uses the
MIPS standard MTC2, CTC2, MFC2 instructions for accessing Coprocessor 2.

mycx rl # get current context number
ctc2 rl1, $1 # tell cop2 which context this is
mtc2 # supply other data to cop2
csw r2 # switch, and wait for cop2
ctc2 r3, $2 # kick off cop2 in delay slot

after the context switch,
when the cop2 operation completes
this thread is made ready and
eventually gets dispatched here
ctc2 rl1, $1 # tell cop2 which context this is
mfc2 # retrieve results

2.4.12. Program Access to New Registers

The new registers described in Section 2.4.1. CXPC, CXSTATUS, MOVECX, as well as the general registers
of all contexts, are accessible under program control by the active thread.

The MOVECKX register, which determines the target context for the MTCXC, MFCXC, MTCXG, MFCXG
instructions, is loaded by the MTLXCO instruction and can be read with the MFLXCO instruction.

The number of the currently executing context can be accessed with the MYCX instruction, which loads it
into a general register.

CXPC and CXSTATUS are new Coprocessor 0 registers. These context control registers (ct or cd) can be
moved to or from general registers (rt or rd) of the active thread using the following instructions:

MTCXC rt, cd moves gen reg rt (of the active context) to cd

MFCXC rd, ct moves ct to gen reg rd (of the active context)
where,

ctor cd = {CXSTATUS, CXPC}

MOVECX]2:0] designates the context whose ct or cd is to be accessed.

MTCXC and MFCXC shoulahot be used to access the CXPC of the currently active thread. If ct or cd is the
CXPC of the currently active thread, the result of MTCXC or MFCXC is undefined.

Two additional instructions permit the general registers (rt or rd) in the active thread to be transferred to or

Lexra Proprietary & Confidential -28- Release 1.9

LEM% April 2, 2001 NetVortex

2.5.

from the general registers (gt or gd) in inactive threads:
MTCXG rt, gd moves rt (of the active context) to gd of context MOVECX

MFCXG rd, gt moves gt of context MOVECX to rd (of the active context)

This capability is useful in debugging, so that all registers are accessible without execution of a context
switch. (The special case of moves within a single context using MTCXG, MFCXG is undetectable by the
assembler, though it would normally be performed using a MIPS I instruction.)

Accessing a general register in an inactive context will give unpredictable results if a load is pending to that
register.

MTCXC, MFCXC, MTCXG and MFCXG are extensions to the MIPS ISA. They function similarly to the
MIPS MTCO and MFCO instructions, but the opcodes have different object code assignments to allow the
number of Coprocessor 0 registers to be extended. As with MTCO and MFCO, a Coprocessor Usability Trap
is taken in User Mode if CPO is not designated usable in STATUS (MTCXC, MFCXC, MTCXG, MFCXG
are always usable in Kernel Mode.)

2.4.13. Exceptions

The MIPS R3000 exception processing model is unchanged by LX8000, with one difference explained in the

next paragraph. Following a program synchronous trap or an interrupt, the PC of the current thread is stored
in the program-visible EPC register. Exceptions are “precise”, allowing an exception handler to possibly take

recovery steps and then resume execution at the PC of the exception. If there is an activencasuasext

switch occurs when an exception (trap or interrupt) is taken. The exception handler executes in the same
context that was current at the time the exception was taken. The handler can use the MYCX instruction to
determine its context, if necessary.

LX8000 suppresses exceptions that occur in the delay slot of a context switch. This simplified approach is
acceptable in embedded systems. Exception reporting is a useful debug tool during the development process,
but is not necessary in production systems. This suppression of exceptions applies to both interrupts and all
program synchronous traps. Therefore, instructions which deliberately cause exceptions (BREAK,
SYSCALL) should never be coded in the delay slot of a CSW-type instruction. An EJTAG debugger should
never attempt to insert an SDBBP in the delay slot, and should also note that single-stepping will execute past
the delay slot instruction.

To facilitate system level error detection and reporting, the processor has a special response to the assertion of
its IntreqN[7] hardware interrupt input. When this interrupt is asserted, the processor forces context O into a
ready state by clearing all of the wait flags in context 0's CXSTATUS register. This ensures that there is a
context available to service the interrupt. However, the interrupt may be serviced by any other ready context.

Note that all threads share a common set of Coprocessor 0 registers including the exception processing
registers listed in Table 2 on page 21, and the ESTATUS, ECAUSE and INTVEC registers described in
Section 2.5.

Low-Overhead Prioritized Interrupts

The LX8000 includes eight new low-overhead hardware interrupt signals. These signals are compatible with
the R3000 Exception Processing model and are useful for real-time applications.

These interrupts are supported with three new Lexra CPO registers, ESTATUS, ECAUSE, and INTVEC,
accessed with the new MTLXCO and MFLXCO variants of the MTCO and MFCO instructions. As with any
COPO instruction, a Coprocessor Unusable Exception is taken if these instructions are executed while in User
Mode and the CuO0 bit is 0 in the CPO STATUS register.

Lexra Proprietary & Confidential -29- Release 1.9

LEdasA

April 2, 2001

NetVortex

The three new Lexra CPO registers are ESTATUS (0), ECAUSE (1), and INTVEC (2), and are defined as

follows:

ESTATUS (LX COPO Reg 0) Read/Write

31-24 23-16 15-
0 IM[15:8] 0
ECAUSE (LX COPO Reg 1) Read-only
31-24 23-16 15.-
0 IP[15:8] 0

INTVEC (LX COPO Reg 2) Read/Write

31-6

BASE

ESTATUS contains the new interrupt mask bits IM[15:8], which are reset to 0 so that none of the new
interrupts will be activated, regardless of the global interrupt signal IEc. IP[15:8] for the new interrupt signals
is located in ECAUSE and is read-only. These fields are similar to the IM and IP fields defined in the R3000
Exception Processing Model, except that the new interrupts are prioritized in hardware, and each have a
dedicated exception vector.

IP[15] has the highest priority, while IP[8] has the lowest priority, however, all new interrupts are higher
priority than IP[7:0]. The program defined BASE address for the exception vectors is located in INTVEC.
The exception vector used for each prioritized interrupt is shown in the table below. Two instructions can be
executed in each vector; typically these will consist of a jump instruction and its delay slot, with the target of
the jump being either a shared interrupt handler or one that is unique to that particular interrupt.

Table 5: Prioritized Interrupt Exception Vectors

Interrupt Number Exception Vector
15 BASE || 111000
14 BASE || 110000
13 BASE || 101000
12 BASE || 100000
11 BASE || 011000
10 BASE || 010000
9 BASE || 001000
8 BASE || 000000

When a vectored interrupt causes an exception, all of the standard actions for an exception occur. These
include updating the EPC register and certain subfields of the standard STATUS and CAUSE registers. In
particular, the Exception Code of the CAUSE register indicates “Interrupt”, and the “current” and “previous”
mode bits of the STATUS register are updated in the usual manner.

Lexra Proprietary & Confidential -30-

Release 1.9

LEW% April 2, 2001 NetVortex

3. LX8000 RISC Programming Model

3.1.

This section describes the LX8000 Programming Model. Section 3.1, Summary of MIPS-I Instructions,
contains a list summarizing all MIPS-I operations supported by the LX8000. These opcodes may be extended
by the customer using Lexra’s Custom Engine Interface (CEIl). This capability is described in Section 3.2,
Opcode Extension Using the Custom Engine Interface (CEl).

Section 3.3, Memory Management, describes the Simplified Memory Management Unit (SMMU) which is
physically incorporated in the LX8000 LMI. The SMMU provides sufficient memory management
capabilities for most embedded applications while ensuring execution of third-party MIPS software
development tools.

The LX8000 supports the MIPS R3000 Exception Processing model, as described in Section 3.4, Exception
Processing.

The LX8000 supports all MIPS-I Coprocessor operations. The customer can include one to three application-
specific Coprocessors. Lexra provides a functional block called the Coprocessor Interface (Cl) which allows
the customer a simplified connection between their Coprocessor and the internal signals of the LX8000. The
Cl is described in Section 3.5, The Coprocessor Interface (CI).

Lexra’s application specific instruction-set extensions are described in detail in Section4, LX8000
Instruction Extensions.

Summary of MIPS-I Instructions

The NetVortex executes MIPS-I instructions as detailed in the tables below. To summarize, the NetVortex
executes MIPS-I instructions with the following exclusions: the unaligned loads and stores (LWL, SWL,
LWR, SWR) are not supported because they add significant silicon area for little benefit in most applications.
The unaligned loads and stores execute as a NOP. This can cause code to execute incorrectly if the
programmer expected these instructions to provide the unaligned load or store operations.

3.1.1. ALU Instructions

Table 6: ALU Instructions

Instruction Description

ADD D, rA, 1B D <- rA + {rB, immediate}

ADDU D, rA, 1B Add reg rA to either reg rB or a 16-bit immediate sign-

ADDI rD, rA, immediate | extended to 32 bits. Result is stored in reg rD. ADD and ADDI

ADDIU rD, rA, immediate | can generate overflow trap; ADDU and ADDIU do not.

SuUB D, rA, 1B rD<-rA-rB

SUBU D, rA, 1B Subtract reg rB from reg rA. Result is stored in register rD.
SUB can generate overflow trap. SUBU does not.

AND D, rA, rB D <- rA & {rB, immediate}

ANDI rD, rA, immediate | Logical and of reg rA with either reg rB or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

OR D, rA, 1B D <- rA | {rB, immediate}

ORI rD, rA, immediate | Logical or of reg rA with either reg rB or a 16-bit immediate

zero-extended to 32 bits. Result is stored in reg rD.

Lexra Proprietary & Confidential -31- Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Description

XOR D, rA, 1B rD <- rA "~ {rB, immediate}

XORI rD, rA, immediate | Logical xor of reg rA with either reg rB or a 16-bit immediate
zero-extended to 32 bits. Result is stored in reg rD.

NOR D, rA, 1B rD<-~(rA| rB)

Logical nor of reg rA with either reg rB or a zero-extended 16-
bit immediate. Result is stored in reg rD.

LUI rD, immediate rD <- immediate || 16'(0)

The 16-bit immediate is stored into the upper half of reg rD.
The lower half is loaded with zeroes.

SLL rD, rB, immediate | rD <- rB << {rA, immediate}

SLLV rD, B, rA Reg rB is left-shifted by 0-31. The shift amount is either the 5b
immediate of the 5 Isb of rA. Result is store in reg rD.

SRL rD, rB, immediate | rD <- rB >> {rA, immediate}

SRLV rD, B, rA Reg rB is right-shifted by 0-31. The unsigned shift amount is
either the 5b immediate or the 5 Isb of rA. Result is stored in
reg rD.

SRA 1D, rB, immediate | rD <- rB >>(a) {rA, immediate}

SRAV 1D, B, rA Reg rB is arithmetic right-shifted by 0-31. The unsigned shift
amount is either the 5b immediate or the 5 Isb of rA. Result is
stored in reg rD.

SLT D, rA, 1B rD <- 31'(0) || 1 if rA < {rB, immediate} else 0

SLTU D, rA, 1B If reg rA is less than {rB, immediate} set rD to 1, else 0. The

SLTI rD, rA, immediate | 16-bit immediate is sign extended. For SLT, SLTI, the compari-

SLTIU rD, rA, immediate | son is signed; for SLU, SLTIU, the comparison is unsigned.

3.1.2. Load and Store Instructions
Table 7: Load and Store Instructions

Instruction Description

LB rD, offset(rA) rD <- Memory][rA + offset]

LBU rD, offset(rA) Reg rD is loaded from data memory. The memory address is

LH rD, offset(rA) computed as base + offset, where the base is reg rA and the

LHU rD, offset(rA) offset is the 16-bit offset sign-extended to 32 bits.

LW rD, offset(rA) LB, LBU addresses are interpreted as byte addresses to data

memory; LH, LHU as halfword (16-bit) addresses; LW as word
(32-bit) addresses.

The data fetched in LB, LH (LBU, LHU) is sign-extended (zero-
extended) to 32-bits for storage to reg rD.

rD cannot be referenced in the instruction following a load
instruction.

Lexra Proprietary & Confidential

-32-

Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Description

SB rB, offset(rA) rB -> Memory[rA + offset]

SH rB, offset(rA) Reg rB is stored to data memory. The memory address is
SW rB, offset(rA) computed as base + offset, where the base is reg rA and the

offset is the 16-bit offset sign-extended to 32 hits.

SB addresses are interpreted as byte addresses to data mem-
ory; the 8 Isb of rB are stored. SH addresses are interpreted
as halfword addresses to data memory; the 16 Isb of rB are
stored.

3.1.3. Conditional Move Instructions

Table 8: Conditional Move Instructions

Instruction Description
MOVZ D, rS, T ifrT=0
D <-rS
else
rD<-rD

Conditional Move on Equal Zero

If the contents of general register T are equal to 0, the general
register rD is updated with rS; otherwise rD is unchanged.

MOVN D, 1S, rT ifrT1=0
D<-rS

else
rD<-rD

Conditional Move on Not Equal Zero

If the contents of general register rT are not equal to O, the gen-
eral register rD is updated with rS; otherwise rD is unchanged.

3.1.4. Branch and Jump Instructions

Table 9: Branch and Jump Instructions

Instruction Description
BEQ rA, rB, destination | if COND
BNE rA, rB, destination pc <- (pc + 4) + 14'(destination[15]) || destination || 00
else
pc <- (pc + 8)

where COND = (rA = rB) for EQ, (rA ne rB) for NE, and desti-
nation is a 16-bit value.

For BEQ, BNE the instruction after the branch (delay slof) is
always executed.

Lexra Proprietary & Confidential -33- Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Description
BLEZ rA, destination if COND
BGTZ rA, destination pc <- (pc + 4) + 14'(destination[15]) || destination || 00
else
pc <- (pc + 8)

where COND = (rA <= 0) for LE, (rA > 0) for GT, and destina-
tion is a 16-bit value

For BLEZ, BGTZ the instruction after the branch (delay slot) is
always executed.

BLTZ rA, destination if COND
BGEZ rA, destination pc <- (pc + 4) + 14'(destination[15]) || destination || 00
else
pc <- (pc + 8)

where COND = (rA < 0) for LT, (rA >= 0) for GE, and destina-
tion is a 16-bit value

For BLTZ, BGEZ the instruction after the branch (delay slof) is
always executed.

BLTZAL rA, destination Similar to the BLTZ and BGEZ except that the address of the
BGEZAL rA, destination instruction following the delay slot is saved in r31 (regardless
of whether the branch is taken.)

J target pc <- pc(31:28) || target || 00
target is a 26-bit absolute. The instruction following J (delay
slot) is always executed.

JAL target Same as above except that the address of the instruction fol-
lowing the delay slot is saved in r31.

JR rA pc <- (rA)
The instruction following JR (delay slot) is always executed.

JALR rA, rD Same as above except that the address of the instruction fol-
lowing the delay slot is saved in rD.

3.1.5. Control Instructions

Table 10: Control Instructions

Instruction Description

SYSCALL The Sys Trap occurs if SYSCALL is executed.

BREAK The Bp Trap occurs if BREAK is executed.

RFE Causes the KU/IE stack to be popped. Used when returning
from the exception handler. See “Exception Processing”
below.

Lexra Proprietary & Confidential -34- Release 1.9

LEN% April 2, 2001 NetVortex

3.1.6. Coprocessor Instructions

Table 11: Coprocessor Instructions

Instruction Description

LWCz rCGEN, offset(rA) rCGEN <- Memory[rA + offset]

Coprocessor z general reg rCGEN is loaded from data mem-
ory. The memory address is computed as base + offset,
where the base is reg rA and the offset is the 16-bit offset
sign-extended to 32 bits.

rCGEN cannot be referenced in the following instruction (one
cycle delay).

SWCz rCGEN, offset(rA) rCGEN <- Memory][rA + offset]

Coprocessor z general reg rCGEN is stored to data memory.
The memory address is computed as base + offset, where
the base is reg rA and the offset is the16-bit offset sign-
extended to 32 bits.

MTCz rB, *CGEN In MTCz(CTCz), the general register rB is moved to Copro-
CTCz rB, *CCON cessor z general (control) reg rCGEN(rCCON).
rCGEN and rCCON cannot be referenced in the following
instruction.
MFCz rB, *CGEN In MFCz(CFCz), the Coprocessor z general (control) reg
CFCz rB, rCCON rCGEN(rCCON) is moved to the general register rB.
rB cannot be referenced in the following instruction.
BCzT destination pc <- (pc + 4) + 14’(dest(15)) || dest || 00
BCzF destination if COND else pc <- (pc + 8)
where COND = (CpCondz = True) for BCzT, (CpCondz =
False) for BCzF.

For BCzT, BCzF the instruction after the branch (delay slof) is
always executed.

3.2. Opcode Extension Using the Custom Engine Interface (CEI)

3.2.1. CEl Operations

Customers may add proprietary or application-specific opcodes to their NetVortex based products using the
Custom Engine Interface (CEI). The new instructions take one of the following forms illustrated below and
use reserved opcodes.

Lexra Proprietary & Confidential -35- Release 1.9

LEN% April 2, 2001 NetVortex

Table 12: Custom Engine Interface Operations

New Instruction Description Available Opcodes

NEWOPI D, rA, immed rD <- rA NEWOPI immed INST[31:26] =24 - 27
Reg rA is supplied to the SRCL1 port of
CEl and the 16-bit immediate, sign-
extended to 32-bits is supplied to
SRC2.

The result of the customer's NEWOPI
is placed on the CEl input port RES
and stored in reg rD.

NEWOPR D, rA, rB rD <- rA NEWOPR rB INST[31:26] = 0 and
Reg rA is supplied to the SRC1 port of | INST[5:0] = 56,58-
CEl and reg rB is supplied to SRC2. 60,62-63

The result of the customer's NEWOPI
is placed on the CEl input port RES
and stored in reg rD.

Lexra permits customer operations to be added using the four (4) I-Format opcodes and six (6) R-Format
opcodes listed in the Table above. Other opcode extensions in future Lexra producist willize the
opcodes reserved above.

When the CEI decodes NEWOPI or NEWOPR, it must signal the Core that a custom operation has been
executed so that the Reserved Instruction trap will not be taken. Multi-cycle custom operations may be
executed by asserting CESEL.

Note: The custom operation may choose to ignore the SRC1 and SRC2 operands supplied by the CEl and

reference customer registers instead. Results can also be written to an implicit customer register; however,
unless D = 0 is coded, a register in the Core will also be written.

3.2.2. Interface Signals

Table 13: Custom Engine Interface Signals

Signal z}t’apl)aetive 0 core) Description

SRC1[31:0] OUTPUT Operand supplied to customer logic.

SRC2[31:0] OUTPUT Operand supplied to customer logic.

RES[31:0] INPUT Result of customer logic. Supplied to Core.

CEIOP[11:0] OUTPUT Instruction OP and SUBOP fields — to be decoded by
customer logic.

CEHALT INPUT Indicates that a multi-cycle custom operation is in
progress.

CESEL INPUT Indicates that a CEI operation has been decoded.

Lexra Proprietary & Confidential -36- Release 1.9

LEN% April 2, 2001 NetVortex

3.3.

3.4.

Memory Management

The LX8000 includes a Simplified Memory Management Unit (SMMU) for the instruction memory address
and the data memory address. These units are physically located in the Local Memory Interface (LMI)
modules. The hardwired virtual-to-physical address mapping performed by the SMMU is sufficient to ensure
execution of third-party software development tools.

Table 14: SMMU Address Mapping

Virtual Address Space Description Mapped to Physical Address
OxFF00_0000 to EJTAG address space. 0xFF00_0000 to OxFFFF_FFFF
OXFFFF_FFFF 16 Mbyte. Uncached.

This address range is
reserved for EJTAG use

only.
0xC000_0000 to KSEG2. 1Gbyte (minus | 0xC000_0000 to OXFEFF_FFFF
OXFEFF_FFFF 16 Mbyte). Addressable

only in kernel mode.

Cached.
0xA000_0000 to KSEGL. 0.5 Ghyte. 0x0000_0000 to Ox1FFF_FFFF
OXxBFFF_FFFF Addressable only in ker-

nel mode. Uncached.
Used for I/O devices.

0x8000_0000 to KSEGO. 0.5 Ghyte. 0x0000_0000 to OX1FFF_FFFF
OX9FFF_FFFF Addressable only in ker- | (differentiated from KSEG1

nel mode. Cached. addresses with an internal signal)
0x0000_0000 to KUSEG. 2Gbyte. 0x4000_0000 to OXBFFF_FFFF
OX7FFF_FFFF Addressable in kernel or

user mode. Cached.

Note: The 0.5 Gbyte of physical address space from 0x2000_0000 to 0x3FFF_FFFF is not accessible with
the above memory map.

Exception Processing

The LX8000 implements the MIPS R3000 exception processing model as described below. Features specific
to on-chip TLB support are not included. In the discussion below, the éeeaption refers to bothraps,

which are non-maskable program synchronous events, imadupts, which result from unmasked
asynchronous events.

The list below is numbered from highest to lowest priority. ExcCode is stored in CAUSE when an exception
is taken. Note that Sys, Bp, RI, CpU can share the same priority level because only one can occur in a
particular time slot.

Lexra Proprietary & Confidential -37- Release 1.9

LEW% April 2, 2001 NetVortex

Table 15: List of Exceptions

Exception Priority ExcCode Description

Reset 1 -- Reset trap.

AdEL — 2 4 Address exception trap. Instruction
instruction fetch. Occurs if the instruction address

is not word-aligned or if a kernel
address is referenced in user mode.

Ov 3 12 Arithmetic overflow trap. Can occur as a
result of signed add or subtract opera-
tions.

Sys 4 8 SYSCALL instruction trap. Occurs

when SYSCALL instruction is executed.

Bp 4 9 BREAK instruction trap. Occurs when
BREAK instruction is executed.

RI 4 10 Reserved instruction trap. Occurs when
areserved opcode is fetched. Reserved
opcodes are listed below.

CpU 4 11 Coprocessor Usability trap. Occurs
when an attempt is made to execute a
Coprocessor n operation and Copro-
cessor n is not enabled.

AdEL — data 5 4 Address exception trap. Data fetch.
Occurs if the data address is not prop-
erly aligned or if a kernel address is
generated in user mode.

AdES 6 5 Address exception trap. Data store.
Occurs if the data address is not prop-
erly aligned or if a kernel address is
generated in user mode.

Int 7 0 Unmasked interrupt. There are six (6)
level-sensitive hardware interrupt
request signals into the NetVortex Core.
Each is synchronized by the Core to the
NetVortex system clock. In addition,
program writes to CAUSE[9:8] are soft-
ware-initiated interrupt requests. Each
of the eight (8) requests has an associ-
ated mask bit in STATUS. Int is gener-
ated by any unmasked request (when
Interrupts are globally enabled).

Lexra Proprietary & Confidential -38- Release 1.9

LEN% April 2, 2001 NetVortex

3.4.1. Exception Processing Registers: STATUS, CAUSE, EPC, Bad-
VAddr

STATUS: Coprocessor 0 General Register Address = 12

31-28

27-23 | 22 21-16 | 15-8 76 |5 4 3 2 1 0

CU(3:0)

0 BEV | 0 IM(7:0) | 0 | KUo | IEo | KUp | IEp | KUc | IEc

Cu

BEV

KU/IE

STATUS

CUI[n] = 1(0) indicates that Coprocessor n is usable(unusable) in Coprocessor instructions.
Bootstrap Exception Vector. Selects between two trap vectors. (see below)
Interrupt masks for the six hardware interrupts and two software interrupts.

KU =0(1) indicates kernel (user) mode. In the LX8000, user mode virtual addresses must have
msb = 0. In kernel mode, the full address space is addressable. IE = 1(0) indicates that
interrupts are enabled (disabled).

KUo | IEo | KUp | IEp | KUc | IEc forms a three-level stack hardware stack KU/IE signals. The
current values are KUc/IEc, thprevious values are KUp/IEp, and thad values (those before
previous) are KUo/IEo. (see below)

is read or written using MTCO and MTFO operations. On reset, BEV = 1, KUc = IEc = 0. The
other bits in STATUS are undefined. The 0 fields are ignored on write and are 0 on read. It is
recommended that the user explicitly write them to 0 to insure compatibility with future
versions of the NetVortex.

CAUSE: Coprocessor 0 General Register Address = 13

31 | 30 | 29-28 27-16 15-8 7 6-2 1-0
BD |0 CE(10) | O IP(7:0) 0 ExcCode(4:0) | O
BD Branch Delay. Indicates that the exception was taken in a branch or jump delay slot.

CE

P

ExcCode

CAUSE

Coprocessor Exception. In the case of a Coprocessor Usability exception, indicates the number
of the responsible Coprocessor.

Interrupt Pending. Each bit in IP(7:0) indicated an associated unmasked interrupt request.

The ExcCode listed above for the different exceptions are stored here when as exception
occurs.

is read or written using MTCO and MTFO operations. The only program writable bits in
CAUSE are IP(1:0), which are calledftware interrupts. CAUSE is undefined at reset. The O
fields are ignored on write and are 0 on read.

EPC: Coprocessor 0 General Register Address = 14

EPC is a 32-bit read-only register which contains the virtual address of the next instruction to be executed
following return from the exception handler. If the exception occurs in the delay slot of a branch, EPC wiill
hold the address of the branch instruction and BD will be set in CAUSE. The branch will typically be re-
executed following the exception handler.

Lexra Proprietary & Confidential -39- Release 1.9

LEN% April 2, 2001 NetVortex

3.5.

BADVADDR: Coprocessor 0 General Register Address = 8

BADVADDR is a 32-bit read-only register containing the virtual address (instruction or data) which
generated an AdEL or AJES exception error.

3.4.2. Exception Processing: Entry and Exit

When an exception occurs, the instruction address changes to one of the following locations:

RESET OxbfcO_0000
Other exceptions, BEV =0 0x8000_0080
Other exceptions, BEV =1 OxbfcO_0180

The KU/IE stack is pushed:

KUo | IEo | KUp | IEp | KUc | IEE] (push)

KUp|IEp|KUc|IEc | O | O
which disables interrupts and puts the program in kernel mode. The code (ExcCode) for the exception source
is loaded into CAUSE so that the application-specific exception handler can determine the appropriate action.

The exception handler should not re-enable Interrupts until necessary context has been saved.

To return from the exception, the exception handler first moves EPC to a general register using MFCO,
followed by a JR operation. RFE ongps the KU/IE stack:

KUp|IEp|KUc|IEc| O | 0O(pop)
KUp | IEp | KUp | IEp | KUc | IEC

(This example assumes that KU/IE were not modified by the exception handler). Therefore, a typical
sequence of operations to return from the exception handler would be:

MFCO EPC, r26 /I r26 is a temporary storage register in the RALU
JR r26
RFE

The Coprocessor Interface (Cl)

Designers may implement up to three Coprocessors to interface with the LX8000. The contents of these
Coprocessors may include up to thirty-two (32) 32daheral registers and up to thirty-two (32) 32-bit

control registers. The general registers may be moved to and from the RALU's registers using MTCz, MFCz
operations, or be loaded and stored from data memory using LWCz, SWCz operations. The control registers
may only be moved to and from the RALU'’s registers using CTCz, CFCz operations.

Lexra supplies a simple Coprocessor Interface (CI) model allowing the customer to easily interface a
Coprocessor to the NetVortex. The Cl supplies a set of control, address, and data busses that may be tied
directly to the Coprocessor general and special registers.

The Cl is described in more detalil in Section 6, LX8000 Coprocessor Interface.

Lexra Proprietary & Confidential -40- Release 1.9

LEN% April 2, 2001 NetVortex

4. LX8000 Instruction Extensions

4.1. Context Switch and Data Transfer Operations

The table below explains the details of the instructions that are used to cause a context switch, and to transfer
data on behalf of a context. The context switching instructions typically set one or more WAIT bits in the
context's CXSTATUS register which prevent the context from being reactivated until its program can
usefully resume.

Since a thread may wish to wait for notification of up to eight (hardware or software) events, there is a user-
mode instruction, POSTCX, which allows another thread to atomically clear any (within this processor)
context’s WAIT-EVENT bits. For cross-processor notification, the optional Test and Set Engine may be used
as described in Section 9, NetVortex Test and Set Engine.

The instruction MYCX allows the program to determine its own context number and, if there are multiple
processors in the system, its own processor number. This allows several threads to execute the same program,
but to use their context numbers (and/or processor numbers) to access unique memory regions or remote
devices.

All of these instructions are expected to be executed in User mode andtaugbject to any coprocessor
usability exceptions.

For all of the instructions which cause a context switch, there is a single instruction delay slot. That is, the
instruction immediately following the context-switching instruction is executed in the same context, and that
context's CXPC is loaded with the address of the instruction after the delay slot. Immediately after the
execution of the delay slot instruction, the newly selected context begins execution at the instruction specified
by its CXPC register.

There are restrictions on the type of instruction that can be executed in the delay slot of context switching
instructions. These restrictions are detailed in a note following Table 16.

For several of the instructions, the descriptions are nearly identical, differing in only a few items. In order to
make it easier for the reader to identify onlydiféerences, these are indicated witiderlined tet.

Table 16: Context Switching Instructions

Instruction Syntax and Description

My Context MYCX rD

The current context number is placed into rD[2:0]. If there are multiple
processors in the system, the number of the processor executing this
instruction is placed into rD[15:8]. Otherwise rD[15:8] is zeroed. All
other bits of rD are set to zeroes.

Post Event to Context POSTCX rS, 1T

Bits rT[2:0] are used as the target context cntx. Bits rS[31:24] are log-
ically ANDed with bits 15:8 (the WAIT-EVENT bits) of the CXSTATUS
register for context cntx, and that context's CXSTATUS register is
updated with the result.

If a MFCXC instruction is executed as the first instruction immediately
following the POSTCX, it is unpredictable whether the new or old
value of CXSTATUS is returned.

Lexra Proprietary & Confidential -41 - Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description
Context Switch Uncon- CSW rs
ditional Bits 15:8 (the WAIT-EVENT bits) from this context’s CXSTATUS regis-

ter are logically ORed with rS[31:24] and the CXSTATUS register is
updated with the result. An unconditional context switch occurs after
the execution of this instruction’s delay slot.

Load Word Uncached LW.CSW rT, displacement(base)

with Context Switch The displacement, in bytes, is a signed 12-bit quantity that must be
divisible by 4 (since it occupies only 10 bits of the instruction word).
The displacement is sign extended and added to the contents of base
to form the address temp. The word addressed by temp is fetched
using a split transaction and loaded into rT. The WAIT-LOAD bit is set
in this context's CXSTATUS register while the fetch is in progress. An
unconditional context switch occurs after the execution of this instruc-
tion’s delay slot.

If temp does not specify an address in uncachable space, the result of
the operation is undefined.

If temp specifies an address in DMEM space, the result of the opera-
tion is undefined.

If temp is not word aligned, an address exception is taken and no con-
text switch occurs.

Load TwinWord LT.CSW rT, displacement(base)
Uncached with Context | The displacement, in bytes, is a signed 13-bit quantity that must be
Switch divisible by 8 (since it occupies only 10 bits of the instruction word).

The displacement is sign extended and added to the contents of the
register base to form the address temp. The word addressed by temp
is fetched using a twinword split transaction, and loaded into rT (which
must be an even register). The word addressed by femp+4 is loaded
into rT+1. The WAIT-LOAD bit is set in this context's CXSTATUS reg-
ister while the fetches are in progress. An unconditional context
switch occurs after the execution of this instruction’s delay slot.

If temp does not specify an address in uncachable space, the result of
the operation is undefined.

If temp specifies an address in DMEM space, the result of the opera-
tion is undefined.

If temp is not twinword aligned, an address exception is taken and no
context switch occurs.

Load QuadwWord LQ.CSW rT, displacement(base)
Uncached with Context | The displacement, in bytes, is a signed 14-bit quantity that must be
Switch divisible by 16 (since it occupies only 10 bits of the instruction word).

The displacement is sign extended and added to the contents of the
register base to form the address temp. The word addressed by temp
is fetched using a guadword split transaction, and loaded into rT
(which must be a register number divisible by four). The word
addressed by temp+4 is loaded into rT+1. The word addressed by
temp+8 is loaded into rT+2. The word addressed by temp+12 is
loaded into rT+3. The WAIT-LOAD bit is set in this context's CXSTA-
TUS register while the fetches are in progress. An unconditional con-
text switch occurs after the execution of this instruction’s delay slot.

If temp does not specify an address in uncachable space, the result of
the operation is undefined.

If temp specifies an address in DMEM space, the result of the opera-
tion is undefined.

If temp is not quadword aligned, an address exception is taken and no
context switch occurs.

Lexra Proprietary & Confidential -42- Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description

Load TwinWord LTW rT, displacement(base)

The displacement, in bytes, is a signed 13-bit quantity that must be
divisible by 8 (since it occupies only 10 bits of the instruction word).
The displacement is sign extended and added to the contents of the
register base to form the address temp. The word addressed by temp
is fetched and loaded into rT (which must be an even register). The
word addressed by temp+4 is loaded into rT+1.

If temp is not twinword aligned, an address exception is taken.

If the instruction immediately following LTW attempts to use rT or
rT+1, the results of that instruction are unpredictable.

Write Descriptor WDI[.CSW] rS, rT, devicelD

A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
the contents of rT in bits 31:0. If the optional. CSW extension is speci-
fied, then bits 63:56 of the descriptor are logically OR-ed with the
WAIT-EVENT bits of this context's CXSTATUS regqister, which is
updated with the result. The processor constructs a system bus
address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devicelD field, and bits 2:0 all zeroes. A system
bus operation is performed to write bits 63:0 of the descriptor to the
device. If the optional. CSW extension is specified, the processor per-
forms a context switch after the execution of this instruction’s delay

slot.
Write Descriptor with WDLW.CSW rD, rS, rT, devicelD
Load Word Uncached A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
and Context Switch the contents of rT in bits 31:0. The WAIT-LOAD bit of this context’s

CXSTATUS register is set. The processor constructs a system bus
address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devicelD field, and bits 2:0 all zeroes. A system
bus operation is performed to write bits 63:0 of the descriptor to the
device, also requesting an uncached split transaction read word
response. The processor performs a context switch after the execu-
tion of this instruction’s delay slot.

When the processor receives the corresponding read word response
from the system bus, it is loaded into register rD of the originating
context's general purpose register file and that context's WAIT-LOAD
flag is cleared.

Write Descriptor with WDLT.CSW 1D, rS, rT, devicelD

Load Twinword A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
Uncached and Context the contents of rT in bits 31:0. The WAIT-LOAD bit of this context’s
Switch CXSTATUS register is set. The processor constructs a system bus

address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devicelD field, and bits 2:0 all zeroes. A system
bus operation is performed to write bits 63:0 of the descriptor to the
device, also requesting an uncached split transaction read twinword
response. The processor performs a context switch after the execu-
tion of this instruction’s delay slot.

When the processor receives the corresponding read twinword
response from the system bus, the first returned word is loaded into
register rD (which must specify an even register), and the second
returned word is loaded into rD+1 of the originating context’s general
purpose register file, and that context’'s WAIT-LOAD flag is cleared.

Lexra Proprietary & Confidential -43- Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description

Write Descriptor with WDLQ.CSW D, rS, rT, devicelD

Load Quadword A 64-bit descriptor is formed, with the contents of rS in bits 63:32 and
Uncached and Context the contents of rT in bits 31:0. The WAIT-LOAD bit of this context’s
Switch CXSTATUS register is set. The processor constructs a system bus

address with bits 31:8 set to a system-specific constant, bits 7:3 set to
the value of the 5-bit devicelD field, and bits 2:0 all zeroes. A system
bus operation is performed to write bits 63:0 of the descriptor to the
device, also requesting an uncached split transaction read quadword
response. The processor performs a context switch after the execu-
tion of this instruction’s delay slot.

When the processor receives the corresponding read guadword
response from the system bus, the first returned word is loaded into
register rD (which must specify a register number divisible by four),
the second returned word is loaded into rD+1, the third returned word
is loaded into rD+2, and the fourth returned word is loaded into rD+3
of the originating context’s general purpose register file, and that con-
text's WAIT-LOAD flag is cleared.

Nomenclature: 1S, T, rD = r0-r31
base r0-r31

Note: The following restrictions apply to the delay slot of any context switching instruction (CSW, LW.CSW,
LT.CSW, LQ.CSW, WD.CSW, WDLW.CSW, WDLT.CSW and WDLQ.CSW):

All: No branch or jump type instruction. No MTCXC instruction.
[WD]LW.CSW, [WD]LT.CSW [WD]LQ.CSW: no access to any register
loaded by the instruction

4.2. Bit Field Processing Operations

Table 17 explains the details of the instructions used to manipulate bit fields.

As shown in the figure, for several of these instructions, a width and insert offset specify a subfield of a 32-bit
register that is to be used as a target of the instruction. For the EXTIV and INSV paired instructions (or
EXTII and INSI), the extract offset and width can specify a (maximally 32-bit) subfield which straddles the
boundary of two source registers or is completely contained in either one of two potential source registers.
Figure 5, Insert and Extract Operations (Straddle Case), illustrates the straddle case.

It is worth noting that the standard MIPS instruction set includes Branch On Equal, and Branch On Not Equal
instructions. Therefore, the Extract instruction can be used to select a field that is tested by a conditional
branch, and no explicit Test instruction is necessary.

For several of the instructions, the descriptions are nearly identical, differing in only a few items. In order to
make it easier for the reader to identify onlydiféerences, these are indicated witiderlined tet.

Lexra Proprietary & Confidential -44- Release 1.9

LEN% April 2, 2001 NetVortex

63 extract from rT (INSV/INSI) 32| 31 extract from rT (EXTIV/EXTII) 0

width extract offset

~

~N

~ Extract

~
INSERT register: 0 width

3 3
Set, Clear,
Insert

31 0

width insert offset
unmodified fields from rS (SETI, CLRI, INSV) * *

Figure 5: Insert and Extract Operations (Straddle Case)

Table 17: Bit Field Processing Instructions

Instruction Syntax and Description

Set Bits Immediate SETI rT, rS, width, offset

The offsetis a value p in the range 0-31. The widthis a value min
the range 1-32 (which is encoded in the instruction as a 5-hit
value modulo 32 — that is, the value 32 is encoded as zero). The
bits rT[m+p-1:p] are set to ones. The remaining bits of rT are cop-
ied from the corresponding bits of rS. If m+p is greater than 32,
the results are unpredictable.

Clear Bits Immediate CLRI r'T, rS, width, offset

The offsetis a value p in the range 0-31. The widthis a value min
the range 1-32 (which is encoded in the instruction as a 5-bit
value modulo 32 — that is, the value 32 is encoded as zero). The
bits rT[m+p-1:p] are set to zeroes. The remaining bits of rT are
copied from the corresponding bits of rS. If m+p is greater than
32, the results are unpredictable.

Lexra Proprietary & Confidential -45- Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description
Extract Bits for EXTIV D, 1S, T
Insertion Variable The bits rS[15:10] are decoded as an extraction offset n in the

range 0-63. The bits rS[9:5] are decoded as a width m in the
range 1-32 modulo 32. The bits rS[4:0] are decoded as an inser-
tion offset p in the range 0-31. These parameter fields of rS are
saved in the implied register INSERT. The remaining bits of rS are
ignored. Considering rT to contain the least significant 32 bits of
the extraction source, a 32-bit intermediate extraction value temp
is generated as follows:

1) if n<32 and (n+m-1) < 32, (least significant word only) the bits
rT[m+n-1:n] are copied into temp[m-1:0] and the remaining bits of
temp are set to zeroes.

2) if n<32 and (n+m-1) > 31, (straddle two words) the bits rT[31:n]
are copied into temp[31-n:0] and the remaining bits of temp are
set to zeroes.

3) if n>31, (most significant word only) temp[31:0] is set to all
Zeroes.

The temp value is stored in rD and also saved in the implied regis-
ter INSERT.

If m+n is greater than 64, the results of this instruction, and a sub-
sequent INSV instruction are unpredictable.

Insert Bits Variable INSV D, 1S, T

This instruction must be coded as the next sequential instruction
in the program sequence after an EXTIV. Otherwise, its results
are unpredictable.

All exceptions are inhibited for the execution of this instruction.
This includes hardware interrupts, debug exceptions and address
exceptions.

The parameter fields m, n, p and the intermediate extraction value
temp are taken from the implied register INSERT, as described for
EXTIV. Considering rT to contain the most significant 32 bits of
the extraction source, the final extracted value resultis generated
as follows:

1) if n<32 and (n+m-1) < 32, the bits temp[31:0] are copied into
resulf31:0].

2) if n<32 and (n+m-1) > 31, the bits temp[31-n:0] are copied into
resulf{31-n:0]. The bits rT[n+m-33:0] are copied into resulfm-
1:32-n]. The remaining bits of result are set to zeroes.

3) if n>31, the bits rT[n+m-33:n-32] are copied into resulfm-1:0].
The remaining bits of result are set to zeroes.

The bits from resulfm-1:0] are copied into rD[m+p-1:p]. The
remaining bits of rD are copied from the corresponding bits of rS.
If m+n is greater than 64, or if m+p is greater than 32, the results
are unpredictable.

Lexra Proprietary & Confidential -46 - Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description
Extract Bits for EXTIL rD, I'T, width, offset
Insertion Immediate The offsetis a value n in the range 0-31. The width is a value m in

the range 1-32 (which is encoded in the instruction as a 5-hit
value modulo 32 — that is, the value 32 is encoded as zero).
These parameter fields are saved in the implied register INSERT.
Considering T to contain the least significant 32 bits of the extrac-
tion source, a 32-bit intermediate extraction value temp is gener-
ated as follows:

1) if (n+m-1) < 32, (least significant word only) the bits rT[m+n-
1:n] are copied into temp[m-1:0] and the remaining bits of temp
are set to zeroes.

2) if (n+m-1) > 31, (straddle two words) the bits rT[31:n] are cop-
ied into temp[31-n:0] and the remaining bits of temp are set to
Zeroes.

The temp value is stored in rD and also saved in the implied regis-
ter INSERT.

Insert Bits Immediate INSI D, 1S, rT, offset

This instruction must be coded as the next sequential instruction
in the program sequence after an EXTI]. Otherwise, its results are
unpredictable.

All exceptions are inhibited for the execution of this instruction.
This includes hardware interrupts, debug exceptions and address
exceptions.

The parameter fields m, n and the intermediate extraction value
temp are taken from the implied register INSERT, as described for
EXTIL The offsetis a value p in the range 0-31. Considering rT to
contain the most significant 32 bits of the extraction source, the
final extracted value resultis generated as follows:

1) if (n+m-1) < 32, the bits temp[31:0] are copied into resulf31:0].
2) if (n+m-1) > 31, the bits temp[31-n:0] are copied into resulf31-
n:0]. The bits rT[n+m-33:0] are copied into resulfm-1:32-n]. The
remaining bits of result are set to zeroes.

The bits from resulfm-1:0] are copied into rD[m+p-1:p]. The
remaining bits of rD are copied from the corresponding bits of rS.
If m+p is greater than 32, the results are unpredictable.

Hash to Key HASH 1D, rS, keysize

The 5-bit keysize is a value k in the range 4-24. If k is outside this
range, the results are unpredictable. The 32 source bits contained
in rS are hashed to form a key of k bits. The key is stored in rD[k-
1:0]. The remaining bits of rD are zeroed.

For a given keysize, each bit of the key is formed as the logical
XOR of a subset of the source bits. For any keysize these subsets
are mutually exclusive and exhaustive. That is, each source bit is
included in the XOR function of one and only one of the key bits.
The exact composition of the XOR subsets for each keysize is
indicated in Table 18, Hash Instruction Key Bit Definition.

Lexra Proprietary & Confidential -47 - Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description
Most Significant Bit MSB D, 1S, rT
Encode The 32-bit temp is computed as the logical AND of rS with rT.

The 6-bit resultindicates the most significant bit that is set in temp
according to the following table (where “X” means don't care):

temp = 00000000 00000000 00000000 00000000 :result=0
temp = 00000000 00000000 00000000 00000001 result=1
temp = 00000000 00000000 00000000 0000001x : result= 2
temp = 00000000 00000000 00000000 000001xx :result=3
etc.
TeImMpP = IXXXXXXX XXXXXXXX XXXXXXXK XXXXXXXX : result= 32
The resultis stored in rD[5:0]. The remaining bits of rD are
zeroed.

Jump to Offset Regis- | JOR rS, T

ter The 13-bit jump offsetis computed as the logical OR of rT[12:0]

with rS[15:3]

The 32-bit target address is computed as follows:

target [31:16] = rS[31:16]

target [15:3] = offset

target [2:0] = zeroes.

The other bits of rT and rS are ignored.

The program unconditionally jumps to the target address with a
delay of one instruction just like the JR instruction. Handling of the
delay slot instruction for exceptions is the same as for the JR
instruction.

r0-r31

Nomenclature: T, rS, 1D
Notes: For EXTIV, specifying r0 for rS implies (insert / extract) offsets of 0 and a width of 32.

INSV (INSI) must be coded as the next sequential instruction following EXTIV (EXTII). There is only one
INSERT register in the processor (not one per context) which only exists to pass information from
EXTIV(EXTII) to INSV(INSI). The processor inhibits exceptions for INSV(INSI) to ensure that if the
EXTIV(EXTII) instruction completes, the immediately subsequent INSV(INSI) will also complete.

For EXTII the extract offset may not be > 32 (but straddle is allowed) due to format constraints. This should
NOT be a problem since the immediate is known at compile time. If an offset > 32 were needed, the next
most significant register could be used for rT and the offset reduced by 32.

The EXTIV and INSV pair of instructions are intended to allow numerous non-contiguous fields in a packet
to be compacted into a single contiguous key. Even if the alignment of the packet in a set of registers is not
known until runtime, a sequence of 3 instructions per field can be used to accomplish this compaction.

In the example in Figure 6, packet data is loaded into source registers s1, s2, and s3 and fields F1 and F2 are
to be compacted into destination register d1. However, it is not known until run time which of four byte
alignment cases of the packet is valid. At run time, rl is loaded with a value corresponding to the alignment.
Specifically, the value needed in bits 15:10 of rl is the two's complement of the alignment in bits. A single
instruction (ori r1, r0, (-n<<10)) loads the proper value for any of the cases.

Lexra Proprietary & Confidential -48- Release 1.9

LEW% April 2, 2001 NetVortex

sl s2 s3

[|

| |

|

| |

F1 : F2 r1=0

I |

T

p1 F2 rl1 = (-8) << 10

|

| |

|

| F1 L R2 11 = (-16) << 10
. !

: F1 : E2 rl=(-24)<< 10
T |

d1
F2| F1

Figure 6: Packet Field Compaction with Variable Alignment

The following code sequence assumes that rl has been initialized as needed according to the case in
guestion. As shown, a common code path is used regardless of the alignment. Note that rO is a 0 source and
don'’t care destination.

rl contains the value to be subtracted
from the 6-bit default extraction offsets.

addiu r2,rl, (F1_OFFE<<10 + F1 WID<<5 + F1_OFFI)
extiv ro, r2, s2 # F1is from s1 and/or s2

insv di, ro, s1 #insert F1 into d1

addiu r2,rl, (F2_ OFFE<<10 + F2_WID<<5 + F2_OFFI)
extiv ro, r2, s3 # F2 is from s2 and/or s3

insv di, di, s2 # merge F2 into d1

...more fields handled the same way

The above example shows how the packet alignment is handled with a value held in a single register,
placed in the appropriate bit position, so that it can be subtracted from the otherwise fixed extraction offsets.
The widths and insertion offsets are invariant. This paradigm works provided that two conditions are met:

1) The variability in alignment never causes a field to straddle different pairs of source registers. A
sufficient condition is if the extracted field does not cross a word boundary in the nominal case (in other
words, the default extract offset is greater than 31.)

2) The insertion width and alignment never cause a field to straddle a word boundary in the destination
key. This problem can be minimized by reordering the fields in the destination key, but in the worst case, a
field to may be split into two parts to avoid the issue.

If necessary, both of these restrictions can always be satisfied by splitting some source fields into two
fields.

Lexra Proprietary & Confidential -49- Release 1.9

LEN% April 2, 2001 NetVortex
Table 18: Hash Instruction Key Bit Definition
Keysize | KeyBit Source Bits Included in XOR to form Key Bit
3 2824201612 8 4 0
4 2 2925211713 95 1
1 302622181410 6 2
0 312723191511 7 3
Keysize | KeyBit Source Bits eysize KeyBit Spurce Bits
4 262516 9 3 0 5 26241810 9 1
3 28242012 8 4 4 25191611 3 0
5 2 29211713 51 6 3 282012 8 4
1 3022181410 6 2 2 29211713 5
0 312723191511 7 1 302214 6 2
0 31272315 7
6 2516 9 1 7 2416 8 0
5 26 24 18 10 6 2517 9 1
4 1911 3 0 5 261810 2
7 3 282012 8 4 8 4 271911 3
2 29211713 5 3 282012 4
1 302214 6 2 2 2921135
0 31272315 7 1 302214 6
0 312315 7
Keysize KeyBit Source Bits eysize KeyBit Spurce Bits Keysize KeyBit Source Bits
8 2616 9 9 2613 9 10 30 7
7 24 80 8 2016 3 9 2613 9
6 2517 1 7 24 80 8 2016 3
5 1810 2 6 2517 1 7 24 80
4 271911 3 5 1810 2 6 2517 1
9 3 282012 4 10 4 271911 11 5 1810 2
2 2921135 3 2812 4 4 271911
1 302214 6 2 2921 5 3 2812 4
0 312315 7 1 302214 6 2 2921 5
0 312315 7 1 2214 6
0 312315
11 73 12 2013 13 3013
10 30 26 11 73 12 20 7
9 13 9 10 30 26 11 19 3
8 20 16 9 25 9 10 26 10
7 2480 8 16 0 9 259
6 2517 1 7 24 8 8 16 0
5 1810 2 6 17 1 7 24 8
12 4 271911 13 5 1810 2 14 6 17 1
3 2812 4 4 271911 5 18 2
2 2921 5 3 2812 4 4 2711
1 2214 6 2 2921 5 3 2812 4
0 312315 1 2214 6 2 2921 5
0 312315 1 2214 6
0 312315
Lexra Proprietary & Confidential -50- Release 1.9

LEK'% April 2, 2001 NetVortex
Keysize KeyBit Source Bits eysize KeyBit Spurce Bits Keysize KeyBit Source Bits
14 2913 15 20 4 16 4
13 30 4 14 2913 15 20
12 20 7 13 30 14 14 2913
11 19 3 12 23 7 13 3014
10 26 10 11 19 3 12 23 7
9 259 10 26 10 11 19 3
8 16 0 9 259 10 26 10
7 24 8 8 16 0 9 259
15 6 17 1 16 7 24 8 17 8 16 0
5 18 2 6 17 1 7 24 8
4 2711 5 18 2 6 17 1
3 2812 4 2711 5 18 2
2 21 5 3 28 12 4 2711
1 2214 6 2 215 3 28 12
0 312315 1 22 6 2 215
0 3115 1 22 6
0 3115
17 29 18 14 19 23
16 4 17 29 18 14
15 20 16 4 17 29
14 13 15 20 16 4
13 3014 14 13 15 20
12 23 7 13 30 14 13
11 19 3 12 23 7 13 30
10 26 10 11 19 3 12 7
9 259 10 26 10 11 19 3
8 16 0 9 259 10 26 10
18 7 24 8 19 8 16 0 20 9 259
6 17 1 7 24 8 8 16 0
5 18 2 6 17 1 7 24 8
4 2711 5 18 2 6 17 1
3 2812 4 2711 5 18 2
2 21 5 3 28 12 4 2711
1 22 6 2 215 3 2812
0 3115 1 22 6 2 21 5
0 3115 1 22 6
0 3115
20 3 21 26 22 9
19 23 20 3 21 26
18 14 19 23 20 3
17 29 18 14 19 23
16 4 17 29 18 14
15 20 16 4 17 29
14 13 15 20 16 4
13 30 14 13 15 20
12 7 13 30 14 13
11 19 12 7 13 30
10 26 10 11 19 12 7
21 9 259 22 10 10 23 11 19
8 16 0 9 259 10 10
7 24 8 8 16 0 9 25
6 17 1 7 24 8 8 16 0
5 18 2 6 17 1 7 24 8
4 2711 5 18 2 6 17 1
3 28 12 4 2711 5 18 2
2 215 3 2812 4 2711
1 22 6 2 21 5 3 2812
0 3115 1 22 6 2 215
0 3115 1 22 6
0 3115
Lexra Proprietary & Confidential -51- Release 1.9

April 2, 2001 NetVortex

Keysize KeyBit Source Bits
23 16
22 9
21 26
20 3
19 23
18 14
17 29
16 4
15 20
14 13
13 30
12 7

24 11 19
10 10
9 25
8 0
7 24 8
6 17 1
5 18 2
4 2711
3 2812
2 21 5
1 22 6
0 3115

4.3. Cross Context Access Operations

Table 19 explains the details of instructions that are used to access the general registers or the context control
registers of another context. For the control registers, it is also possible for a thread to access its own

CXSTATUS register.

The target context for all of these instructions is specified in a new Lexra Coprocessor O register, called
MOVECX. That register is itself accessed with MTLXCO and MFLXCO variants of the MIPS standard
MTCO and MFCO instructions. These new instructions are used to access Lexra defined Coprocessor 0
registers that are not in the standard MIPS Coprocessor 0 space. The encoding of these instructions, which
use the COPO major opcode, is described in Section 4.5.

It is expected that these instructions will only be used in kernel mode. Therefore, they are all subject to the
Coprocessor Unusable exception for Coprocessor 0 as are the MTLXCO and MFLXCO instructions.

Table 19: Cross Context Access Instructions

Instruction

Syntax and Description

Move From Context
General Register

MFCXG D, gT

Bits MOVECX[2:0] are used to determine the target context cntx.
The contents of general register gT in context cntx are loaded into
the current context’s general register rD

Move To Context Gen-
eral Register

MTCXG T, gD

Bits MOVECX][2:0] are used to determine the target context cntx.
The general register gD in context cntx is loaded from the con-
tents of the current context's general register rT.

Lexra Proprietary & Confidential

-52- Release 1.9

LEN% April 2, 2001 NetVortex

Instruction Syntax and Description

Move From Context MFCXC D, cT

Control Register Bits MOVECX|2:0] are used to determine the target context cntx.
The contents of control register cT in context cntx are loaded into
the current context’s general register rD.

Move To Context Con- | MTCXC IT, cD

trol Register Bits MOVECX[2:0] are used to determine the target context cntx.
The control register cD in context cntx is loaded from the contents
of the current context’s general register rT.

Nomenclature:
T, D, gT. gD = r0-r31
cD.cT = CXSTATUS, CXPC

Notes: Execution of MTCXC rT, CXPC witMOVECX= current context (attempt to change the currently
executing context's CXPC) results in unpredictable operation.

To examine its own CXSTATUS register a thread can execute this sequence:

MYCX rl
MTLXCO rl, MOVECX
MFCXC r2, CXSTATUS

4.4. Checksum Addition

Table 20 explains the instruction that may be used to calculate a checksum for an Internet Protocol Header
using 16-bit ones complement addition.

Table 20: Checksum Addition Instructions

Instruction Syntax and Description
Dual Add for ACS2 D, rS, 1T
Checksum Dual 16-bit ones complement addition. Considering all quantities

as unsigned 16-bit integers, add the contents of rS[15:00] to
rT[15:00] and, independently add the contents of rS[31:16] to
rT[31:16]. For each independent addition, if there is a carry out of
the most significant bit of its result, add one to that result to form
its final result. The final results of the two additions are placed in
rD[15:00] and rD[31:16].

Notes: In ones complement arithmetic there are two representations of zero: 0x0000 (+Ojffar{eDx
Addition of non-zero quantities can never result in +0, only -0. Addition of -0 to either +0 or -0 results in -0.

This instruction can be used to generate or check the 16-bit checksum used in internet packets. Without
regard to halfword alignment, all of the 32-bit words to be included are incrementally added using ACS2. A
final 16-bit shift and one more ACS2 instruction is used to “fold” the checksum into 16 bits:

la rl, PACKETADDR # get packet address
Iw r2,0(rl) # get many words
Iw r3, 4(rl)

Lexra Proprietary & Confidential -53- Release 1.9

LEN% April 2, 2001 NetVortex

Iw r4, 8(rl)

Iw r5, 12(rl)

Iw r6, 16(rl)

Iw r7,20(rl)

acs2 r2,r2,r3 # add them together
acs?2 r2,r2,r4

acs?2 r2,r2, 15

acs?2 r2,r2, 16

acs?2 r2,r2,r7

st r3,r2, 16 # fold over accumulator
acs? r2,r2,r3 # r2[15:0] has the answer

4.5. LX8000 Instruction Summary and Encoding

Table 21: Instruction Summary

Instruction Description

Context Control Operations and Data Transfers

MYCX rD read My Context

POSTCX rS, 1T Post event to a Context

Csw rsS Context Switch

LTW rT, disp(base) Load Twinword

LW.CSW T, disp(base) Load Word Uncached with Context Switch

LT.CSW rT, disp(base) Load Twinword Uncached with Context Switch
LQ.CSW T, disp(base) Load Quadword Uncached with Context Switch
WD.[CSW] rS, T, devicelD Write Descriptor to Device [with Context Switch]
WDLW.CSW D, rS, rT, dev Write Descriptor to Device and Load Word/Twinword/

Quadword Uncached with Context Switch
WDLT.CSW 1D, rS, rT, dev

WDLQ.CSW 1D, 1S, IT, dev

Bit Field Operations

SETI rT, rS, width, offset Set Subfield to Ones

CLRI r'T, rS, width, offset Clear Subfield to Zeroes

EXTIV D, rS, rT Extract Subfield and prepare for Insertion Variable
INSV D, rS, rT Insert Extracted Subfield Variable

EXTII rD, rT, width, offset Extract Subfield and prepare for Insertion Immediate
INSI rD, rS, T, offset Insert Extracted Subfield Variable Immediate

ACS2 D, 1S, rT Dual 16-bit Ones Complement Add for Checksum
HASH rD, rS, keysize Hash data to a key

Lexra Proprietary & Confidential -54- Release 1.9

LEKIW—\ April 2, 2001 NetVortex
Instruction Description
MSB D, 1S, rT Find Most Significant Bit
JOR rS, T Jump to Offset Register
Cross-Context Access Operations
MFCXG D, gT Move from a Context gpr
MTCXG T, gD Move to a Context gpr
MFCXC rD, cT Move from a Context control register
MTCXC rT,cD Move to a Context control register
Lexra Proprietary & Confidential -55- Release 1.9

LEMW—\ April 2, 2001 NetVortex

45.1. LX8000 Instruction Formats

The Lexra Formats are introduced into the MIPS instruction set by designating a single I-Format as
“LEXOP2", then using the INST[5:0] “subop” field to permit up to 64 new Lexra opcodes. Thus the new
opcodes model the MIPS “special” opcodes encoded in R-Format. The diagrams below illustrate the
LEXOP2 codes using I-Format 011 110 which is unused in the MIPS |-V ISA.

[The default object code for LEXOP2 is 011_110. However, the location can be changed using a static
reconfiguration. This helps insure compatibility of the extensions with future ISA extensions released by
MIPS Technologies, Inc.]

This section also provides detail on the MFLXCO/MTLXCO instructions which are variants of the MIPS
standard MFCO/MTCO instructions. These variants provide access to a space of Lexra defined Coprocessor 0
registers.

Lexra Proprietary & Confidential -56- Release 1.9

LEN% April 2, 2001 NetVortex

45.2. Load Formats

31 26 | 25 21 | 20 16 15 6 |5 0
Assembler LEXOP2 Lexra
Mnemonic 011 110 base rt immediate SUBOP
LW.CSW LEXOP2 base rt displacement/4 LWC
LT.CSW LEXOP2 base rt-even, 0 displacement/8 LTC
LTW LEXOP2 base rt-even, 0 displacement/8 LTW
LQ.CSW LEXOP2 base rt-quad, 00 | displacement/16 LQC
6 5 5 10 6

base, rt Selects general register r0 - r31.

rt-even Selects general register even-odd pair r0/r1, r2/r3 ... r30/r31.

rt-quad Selects general register quad r0/r1/r2/r3 ... r28/r29/r30/r31.

displacement Signed 2s-complement number in bytes.

4.5.3. Write Descriptor Formats

31 26 | 25 21 | 20 16 | 15 11 10 6 |5 0
Assembler LEXOP2 Lexra
Mnemonic 011 110 rs rt rd devicelD SUBOP
WD LEXOP2 rs rt 0 devicelD | WD
WD.CSW LEXOP2 rs rt 0 devicelD | WDC
WDLW.CSW LEXOP2 rs rt rd devicelD | WDLWC
WDLT.CSW LEXOP2 rs rt rd-even,0 devicelD | WDLTC
WDLQ.CSW LEXOP2 rs rt rd-quad,00 | devicelD | WDLQC
6 5 5 5 5 6

rs, rt, rd Selects general register r0 - r31.

rd-even Selects general register even-odd pair r0/r1, r2/r3 ... r30/r31.

rt-quad Selects general register quad r0/r1/r2/r3 ... r28/r29/r30/r31.

devicelD indicates bits 7:3 of system device address.

Lexra Proprietary & Confidential -57- Release 1.9

I qun April 2, 2001 NetVortex
4.5.4. Context, Checksum and Bit Field Formats
31 26 25 21 | 20 16 15 11 10 6 5 0
Assembler LEXOP2 Lexra
Mnemonic 011 110 rs rt rd 0 SUBOP
MYCX LEXOP2 | O 0 rd 0 MYCX
POSTCX LEXOP2 | rs rt 0 0 POSTCX
Csw LEXOP2 | rs 0 0 0 Csw
EXTIV LEXOP2 | rs rt rd 0 EXTIV
INSV LEXOP2 | rs rt rd 0 INSV
ACS2 LEXOP2 | rs rt rd 0 ACS2
MSB LEXOP2 | rs rt rd 0 MSB
JOR LEXOP2 | rs rt 0 0 JOR
6 5 5 5 5 6
31 26 25 21 | 20 16 | 15 11 | 10 6 |5
Assembler LEXOP2 keysize/ Lexra
Mnemonic 011 110 rs rt width offset SUBOP
SETI LEXOP2 | rs rt width offset SETI
CLRI LEXOP2 | rs rt width offset CLRI
EXTII LEXOP2 | width rt rd offset EXTI
INSI LEXOP2 | rs rt rd offset INSI
HASH LEXOP2 | rs 0 rd keysize HASH
6 5 5 5 5 6
rs, rt, rd Selects general register r0 - r31.
width a 5-bit encoding of the width parameter modulo 32. (i.e. the value 32
is represented as 0).
offset a 5-bit encoding of the offset parameter in the range 0-31.
keysize a 5-bit encoding of the keysize parameter in the range 4-24.

Lexra Proprietary & Confidential

-58-

Release 1.9

LEdasA

April 2, 2001 NetVortex
45.5. Cross Context Move Format
31 26 25 21 20 16 15 11 10 6 5 0
Assembler LEXOP2 Lexra
Mnemonic 011 110 0 rt/gt/ct rd/gd/cd 0 SUBOP
MFCXG LEXOP2 | O gt rd 0 MFCXG
MTCXG LEXOP2 | O rt gd 0 MTCXG
MFCXC LEXOP2 | O ct rd 0 MFCXC
MTCXC LEXOP2 | O rt cd 0 MTCXC
6 5 5 5 5 6
rt, rd Selects general register r0 - r31 in the current context.
gt.agd Selects general register r0 - r31 in the context specified by MOVECX.
ct. cd Selects context register in the context specified by MOVECX:
00000 = CXSTATUS
00001 = CXPC
others = reserved
4.5.6. Lexra-CoprocessorO Register Access Instructions
31 26 | 25 21 | 20 16 | 15 11 | 10 0
Assembler COPO
Mnemonic 010 000 Copzrs rt rd 0
MFLXCO COPO MFLX rt rd 000 0000 0000
00011
MTLXCO COPO MTLX rt rd 000 0000 0000
00111
6 5 5 5 11

These arenot LEXOP2 instructions. They are variants of the standard MTCO and MFCO instructions that
allow access to the Lexra Coprocessor 0 registers listed below. As with any COPO instruction, a Coprocessor
Unusable Exception is taken in User mode if the CuO bit is O in the CPO Status register when these
instructions are executed.

rt
rd

Selects general register r0 - r31.
Selects Lexra Coprocessor 0 register:
00000 ESTATUS

00001 ECAUSE

00010 INTVEC

00011 CVSTAG (for Lexra diagnostic purposes only)
00100 MOVECX

00101 reserved

0011x reserved

01xxx reserved

Ixxxx reserved

Lexra Proprietary & Confidential

-59- Release 1.9

Lm% April 2, 2001 NetVortex
4.5.7. Lexra SUBOP Bit Encodings
Table 22: Lexra SUBOP Bit Encoding
Inst[2:0]
Inst[5:3] 0 1 2 3 4 5 6 7

0 HASH | SETI ACS?2 INSV INSI

1 JOR MSB CLRI EXTIV | EXTII

2

3

4 MYCX MFCXG | MTCXG

5 POSTCX MFCXC | MTCXC

6 Ccsw LQC wDC WDLQC | LTC LWC WDLTC | WDLWC

7 WD LTW
Lexra Proprietary & Confidential -60- Release 1.9

LEW% April 2, 2001 NetVortex

5. LX8000 Local Memory

5.1. Local Memory Overview

This chapter describes how memories are configured and connected to the LX8000 using the Local Memory
Interfaces (LMIs). This section provides a brief summary of the conventions and supported memories.

Section 5.2 describes the control register that allows software control over certain aspects of the LMIs. The
subsequent sections cover each of the LMIs in detail.

This chapter also discusses configuration options and the ports that customers must access to connect
application specific RAM devices that are used by the LX8000 LMis. All of the signals between the
processor core, the LMIs, RAMs and the system bus controller are automatically configuocedfigy the

NetVortex configuration toolLconfig also produces documentation of the exact RAMs required for the
chosen configuration settings, and writes RAM models used for RTL simulation.

The LMIsconnect to RAMSs that service the LX8000 processor’s local instruction and data busses. The LMIs
also provide the pathways from the processor to the system bus. The LX8000 includes an LMI for each of the
local memory types. The sizes of the RAMs are customer selectable. The LX8000 LMIs directly support

synchronous RAMs that register the address, write data, and control signals at the RAM inputs. The LMls
also supply redundant read enable and chip select lines for each RAM, which may be required for some
RAM types.

Lexra supplies an integration layer for the LMIs and the memory devices connected to them. In this layer,
memory devices are instanced as generic modules satisfying the depth and width requirements for each
specific memory instance. THeonfig utility supplies a summary of the memory devices required for the
chosen configuration. In most cases, customers simply need to write a wrapper that connects the generic
module port list to a technology specific RAM instance inside the RAM wrapper.

The LX8000 is configurable to work with RAMs with a write granularity of 8 bits (byte) or 32 bits (word).
Byte write granularity results in more efficient operation of store byte and store half-word instructions.

Table 23 summarizes the LMIs that can be integrated on the local busses. Note that the LX8000 used in
NetVortex does not include an instruction cache or data cache.

Table 23: Local Memory Interface Modules

Name Description
IMEM Instruction RAM.
DMEM Data RAM or ROM.

5.2. Cache Control Register: CCTL

CCTL. Coprocessor 0 General Register Address = 20

31-6 5 4 3-0

Reserved IMEMOff IMEMFill Reserved

When reading this register, the contents of the Reserved bits are undefined. When writing this register, the
contents of the Reserved bits should be preserved.

Lexra Proprietary & Confidential -61- Release 1.9

LEN% April 2, 2001 NetVortex

5.3.

Changes in the contents of the CCTL register are observed in the W stage. However, these changes affect
instruction fetches currently in progress in the | stage, and data load or store operations in progress in the M
stage.

The IMEMFill and IMEMOff bits of the CCTL register control the contents and use of any local IMEM
memory configured into the LX8000. When the LX8000 is reset, the LMI clears an internal register to
indicate that the entire IMEM LMI contents are invalid.

A transition from 0 to 1 on IMEMFill causes the LMI to initiate a series of line read operations to fill the
IMEM contents. The addresses used for these reads are defined by the configured BASE and TOP addresses
of the IMEM, described in Section 5.3. The processor stalls while the entire IMEM contents are filled by the
LMI. Thereafter, the LMI sets its internal IMEM valid bit and will service any access to the IMEM range

from the local IMEM memory. The time that an IMEM fill takes to complete is the number of line reads
needed to fill the IMEM range, multiplied by the latency of one line read, assuming there is no other system
bus traffic.

A transition from 0 to 1 on IMEMOff causes the LMI to clear its internal IMEM valid bit. To use the IMEM
again, an application must re-initialize the IMEM contents through the IMEMFill bit of the CCTL register.

Instruction Memory (IMEM) LMI

The IMEM LMI supplies the interface for an optional local instruction store. The IMEM serves a fixed range
of the physical address space, determined by configuration settitgsifig. The IMEM contents are filled

and invalidated under the control of the CPO CCTL register, described in Section 5.2, Cache Control
Register: CCTL. The IMEM module services instruction fetches that falls within its configured range. The
IMEM is a convenient, low-cost alternative to a cache that makes instruction memory available to the core for
high-speed access.

The configurations supported by IMEM, and the synchronous RAMs required for each, are summarized in
Table 24.

Table 24: IMEM Configurations

Configuration IMEM_INST RAM
no local instruction RAM no RAM required
1K bytes 128 x 64 bits

2K bytes 256 x 64 bits

4K bytes 512 x 64 bits

8K bytes 1,024 x 64 bits
16K bytes 2,048 x 64 hits
32K bytes 4,096 x 64 bits
64K bytes 8,192 x 64 bits
128K bytes 16,384 x 64 bits
256K bytes 32,768 x 64 bits

Table 25 lists the IMEM signals that are connected to application specific moduleBAT lpeefix indicates
signals that are driven by the IMEM LMI module and received by RAMs. [Vi& _prefix indicates signals
that are driven by RAMs and received by the IMEM LMI. TBEG _ prefix identifies configuration ports on

Lexra Proprietary & Confidential -62- Release 1.9

LEdasA

5.4.

April 2, 2001 NetVortex

the IMEM LMI that are typically wired to constant values. The width of the index and data lines depends
upon the RAM connected to the LMI, and can be inferred from Table 24.

The CFG_ wires define where the IMEM is mapped into the physical address space. This configuration
information defines the local bus address region of the IMEM. It also determines the address of the external
resources which are accessed when an IMEM miss occurdcariig utility supplied by Lexra will verify

that the configured address range does not interfere with other regions defined for NetVortex. The size of the
memory region must be a power of two, and must be naturally aligned.

Table 25: IMEM RAM Interfaces

Signal Description
IW_INSTINDEX IMEM index.
IWR_INSTRD Instruction read data.
IW_INSTWR Instruction write data.

IW_INSTWE<N>[1:0] Instruction RAM write enable.

IW_INSTRE<N> Instruction RAM read enable.

IW_INSTCS<N> Instruction RAM chip select.

CFG_IWBASE[31:10] Configured base address (modulo 1K bytes).

CFG_IWTOP[17:10] Configured top address (bits that may differ from base).

The IROM LMI supplies the interface for an optional read-only local instruction store. The IROM serves a
fixed range of the physical address space, determined by configuration settiogdign The IROM is a
convenient, low-cost alternative to a cache that makes read-only instruction memory available to the core for
high-speed access.

Scratch Pad Data Memory (DMEM) LMI

The DMEM LMI supplies the interface for a scratch pad data RAM attached to the LX8000 local bus. The
DMEM module services in any cacheable or uncacheable data read or write operation that falls within its
configured range.

Also, because a write operation to the DMEM is never sent to the LBC, writes to DMEM will not cause the
LBC to stall the processor due to a full write buffer condition.

The configurations supported by the DMEM, and the synchronous RAMs required for each, are summarized
in the Table 26.

For NetVortex, 128-bit wide dual-port RAMs are used, and the second port is connected to the processor’s
Block Transfer Engine (BTE).

Table 26: DMEM Configurations

Configuration

DMEM_DATA RAM (64-bit)

DMEM_DATA RAM (128-bit)

no local data RAM

no RAM required

no RAM required

1K bytes 128 x 64 bits 64 x 128 bits
2K bytes 256 x 64 bits 128 x 128 bits
Lexra Proprietary & Confidential -63- Release 1.9

LEN% April 2, 2001 NetVortex
Configuration DMEM_DATA RAM (64-bit) DMEM_DATA RAM (128-bit)
4K bytes 512 x 64 bits 256 x 128 bits
8K bytes 1,024 x 64 bits 512 x 128 bits
16K bytes 2,048 x 64 bits 1,024 x 128 bits
32K bytes 4,096 x 64 bits 2,048 x 128 bits
64K bytes 8,192 x 64 hits 4,096 x 128 hits
128K hytes 16,384 x 64 bits 8,192 x 128 bits
256K bytes 32,768 x 64 bits 16,384 x 128 bits

Table 27 lists the DMEM signals that are connected to application specific moduleDVWheprefix
indicates signals that are driven by the DMEM LMI module and received by RAMs.DWHR_ prefix
indicates signals that are driven by RAMs and received by the DMEM LMI. 0R&_ prefix identifies
configuration ports on the DMEM LMI that are typically wired to constant values. The width of the index and
data lines depends upon the RAM connected to the LMI, and can be inferred from Table 26.

The CFG_ wires define where the DMEM is mapped into the physical address space. This configuration
information defines the local bus address region of the DMEM. It is not possible for any DMEM reference to
result in an operation on the system bus. Tdeefig utility supplied by Lexra will verify that the configured
address range does not interfere with other regions defined for NetVortex. The size of the memory region
must be a power of two, and must be naturally aligned.

Table 27: DMEM RAM Interfaces

Signal

Description

DW_DATAINDEX

Decoded data RAM index.

DWR_DATARD

Data RAM read data.

DW_DATAWR

Data RAM write data.

DW_DATAWE<N>

Data RAM write enable.

DW_DATARE<N>

Data RAM read enable

DW_DATACS<N>

Data RAM chip select

CFG_DWBASE[31:10]

Configured base address (modulo 1K bytes).

CFG_DWTOP[17:10]

Configured top address (bits that may differ from base).

Lexra Proprietary & Confidential

-64-

Release 1.9

LEN% April 2, 2001 NetVortex

6. LX8000 Coprocessor Interface

6.1.

6.2.

The LX8000 processor provides customer access points for the Coprocessor Interfaces. This section provides
a description of these access points. Attachment of memory devices to the LMIs, the System Bus, and the
EJTAG interface are described in separate chapters.

Attaching a Coprocessor Using the Coprocessor Interface (Cl)

A coprocessor may contain up to 32 general registers and up to 32 control registers. Each of these registers is
up to 32 bits wide. Typically, programs use the general registers for loading and storing data on which the
coprocessor operates. Data is moved to the coprocessor’s general registers from the core’s general registers
with the MTCz instruction. Data is moved from the coprocessor’s general registers to the core’s general
registers with the MFCz instruction. Main memory data is loaded into or stored from the coprocessor’s
general registers with the LWCz and SWCz instructions.

Programs may load and store the coprocessor’s control registers from the core’s general registers with the
CTCz and CFCz instructions respectively. Programs may not load or store the control registers directly from
main memory.

The coprocessor may also provide a condition flag to the core. The condition flag can be a bit of a control
register or a logical function of several control register values. The condition flag is tested with the BCzT and
BCzF instructions. These instructions indicate that the program should branch if the condition is true (BCzT)
or false (BCzF).

Coprocessor Interface (ClI) Signals

The CI provides the mechanism to attach the custom coprocessor to the core. The Cl snoops the instruction
bus for coprocessor instructions and then gives the coprocessor the signals necessary for reading or writing
the general and control registers.

Table 28: Coprocessor Interface Signals

Signal Direction Description

C<z>condin input Cop branch flag.

C<z>rd_addr[4:0] output Cop read address.

C<z>rhold output Cop hold condition, one stalls coprocessor.

C<z>rd_gen output Cop general register read command.

C<z>rd_con output Cop control register read command.

C<z>rd_data[31:0] input Cop read data.

C<z>wr_addr[4:0] output Cop write address.

C<z>wr_gen output Cop general register write command.

C<z>wr_con output Cop control write address command.

C<z>wr_data[31:0] output Cop write data.

C<z>invld_M output Cop invalid instruction flag, one indicates
invalid instruction in M stage.

Lexra Proprietary & Confidential -65- Release 1.9

LEW% April 2, 2001 NetVortex

Signal Direction Description

C<z>xcpn_M output Cop exception flag, one indicates exception
in M stage.

C<z>rd_cntx[2:0] output Cop read context number.

C<z>wr_cntx[2:0] output Cop write context number.

The addresses, output data, and control signals are supplied to the user’s Coprocessor on the rising edge of the
system clock. In the case of a read cycle, the coprocessor must supply the data from either the control or
general register on C<z>rd_data by the end of the same cycle. Similarly, the write of data from C<z>wr_data

to the addressed control or general register must be complete by the end of the cycle.

The CI incorporates a forwarding path so that data which is written in Instruction(N) can be read in
instruction (N + 2). The Coprocessor registers should be implemented as positive-edge flip-flops using the
NetVortex system clock.

6.3. Coprocessor Write Operations

During a coprocessor write, the Cl sends C<z>wr_addr and C<z>wr_data, and asserts either C<z>wr_gen or
C<z>wr_con. The coprocessor must ensure that the coprocessor completes the write to the appropriate
register on the subsequent rising edge of the clock. The target register is a decoding of C<z>wr_addr,
C<z>wr_gen and C<z>wr_con. Use these instructions to cause a coprocessor write: LWCz, MTCz, and
CTCz.

6.4. Coprocessor Read Operations

During a coprocessor read, the Cl sends C<z>rd_addr and asserts either C<z>rd_gen or C<z>rd_con. The
coprocessor must return valid data through C<z>rd_data in the following clock cycle. If the core asserts
C<z>rhold, indicating that it is not ready to accept the coprocessor data, the coprocessor must hold the
previous value of C<z>rd_data. The target register for the read is a decoding of C<z>rd_addr, C<z>rd_gen,
and C<z>rd_con. The instructions causing a coprocessor read are SWCz, MFCz, and CFCz.

The CPU stalls the pipeline so that the program can access data read by a coprocessor instruction in the
immediately following instruction. For example, if an MFCz instruction reads data from the coprocessor and
stores it in the core’s general register $4, the program can get access to that data in the following instruction:

mfc2 $4,$3 #Move from COP2 to CPU register $4
subu $5, $4, $2 #Subtract $R2 from $R4 and store in $5

When the core initiates a coprocessor read, the coprocessor must return valid data in the following clock
cycle. The coprocessor cannot stall the CPU. Applications must ensure that the source code does not access
invalid coprocessor data if the coprocessor operations take several clock cycles to complete. This is done in
one of three ways:

» Ensure that code does not access data from the coprocessor until N instructions after the
coprocessor operation has stared. This is the least desirable method as it depends on the
relative execution of the core and coprocessor. It can also complicate software debug.

» Have the coprocessor send an interrupt to the core, and the service routine for that
interrupt accesses the appropriate coprocessor registers.

» Have the coprocessor set the C<z>condin flag when its operation is complete. The source

Lexra Proprietary & Confidential -66 - Release 1.9

LEN% April 2, 2001 NetVortex

code can poll the flag as shown in the example below:

mtc2 $2, $3 #store data to COP2 general register $3
ctc2 $3, $5 #set COP2 control register $5 to start

nop

loop:

bc2f loop #branch back to loop if C<z>condin bit off
nop #branch delay slot

mfc2 $4, $7 #get results from COP2 general register $7

6.5. Coprocessor Interface and Pipeline Stages

Coprocessor writes occur in the W stage of the instruction pipeline. For coprocessor reads, the core generates
address, rd_gen, and rd_con signals during the S stage, and the coprocessor returns data during the E stage
which is passed by the Cl to the core in the M stage. The core introduces a pipeline bubble after coprocessor
instructions to ensure that the result of a MTCz instruction can be used by the immediately following
instruction.

In particular, if there are back-to-back MTCz and MFCz instructions that access the same coprocessor
register, the pipeline bubble still does not allow a cycle between the W stage write and E stage read as
required. In this case a special forwarding path within the ClI is used. That is, the “true” data from the
coprocessor is ignored. Instead the exact data from the MTCz is used.

mtc2 IDSEMW

bubble ID....

mfc2 IDSEMW # data forwarded by CI from mtc2
wr_gen (W) X
rd_gen(S) X
rd_data(E) X

The forwarding path can cause side effects if the coprocessor does not implement all of the bits of a register,
contains read-only bits, or updates the register value upon reading the register. In such cases, the mfc2
instruction returns different data from what it would if the core did not activate the forwarding path. To avoid
the forwarding path, another instruction must be inserted between the mtc2 and mfc2:

mtc2 IDSEMW

bubble ID....

foo IDSEMW

mfc2 IDSEMW #read data from coprocessor
wr_gen (W) X

rd_data(E) X

6.5.1. Pipeline Holds

The coprocessor must register the read address and the control signals rd_gen and rd_con. It must hold the (E
stage) registered values of these signals when C<z>_rhold is active high, and should make the read data
output a function of the (E stage) registered read address and control signals.

The wr_addr, wr_data, wr_gen and wr_con signals need not be registered. The coprocessor may decode these
(W stage) signals directly to the appropriate register.

6.5.2. Pipeline Invalidation

Under certain circumstances the instruction pipeline can contain an instruction that must be discarded. This

Lexra Proprietary & Confidential -67- Release 1.9

LEN% April 2, 2001 NetVortex

can be due to mispredicted branches, cache misses, exceptions, inserted pipeline bubbles etc. In such cases,
the Cl may decode an instruction that must actually be discarded.

For the coprocessor write-type instructions, the CI will only issue the W stage control signals wr_gen and
wr_con for valid instructions. The coprocessor does not need to qualify these controls.

For the coprocessor read-type instructions, the Cl may issue the S stage control signals rd_gen and rd_con for
instructions that must be discarded. If the coprocessor can tolerate speculative reads then it need not qualify
those signals. However, if the coprocessor performs “destructive” reads, such as updating a FIFO pointer
upon read, then it must use the qualifying signals C<z> xcpn_m and C<z>_invid_m as follows:

The signal C<z>_xcpn_m signal is used to discard any S stage (from CI) rd_gen or rd_con signal and any E
stage (registered in the coprocessor) rd_gen or rd_con signal. It indicates that a preceding instruction in the
pipe has taken an exception and that subsequent instructions in the pipe must be discarded.

The signal C<z>_invld_m signal is used to invalidate the operation of the current instruction in the M stage.
This can be for various reasons not limited to an exception on a preceding instruction. If the coprocessor
cannot tolerate speculative reads, it must register an M stage version of rd_gen and rd_con. The coprocessor
must use the C<z>_rhold signal to hold this M stage version (as well as the E stage version). If
C<z>_invld_m is asserted, then any such M stage signals must be discarded. To summarize, a rd_gen or
rd_con instruction can “retire” only if it reaches the M stage and neither C<z>_rhold nor C<z>_invid_m is
asserted.

Lexra Proprietary & Confidential -68- Release 1.9

LEN% April 2, 2001 NetVortex

7. LX8000 EJTAG

7.1.

7.2.

Introduction

Given the increasing complexity of SoC designs, the nature of embedded processor-design debug, hardware
and software, and the time-to-market requirements of embedded systems, a debug solution is needed which
allows on-chip processor visibility in a cost-effect, /O constrained manner.

Lexra’'s EJTAG solution meets all such requirements. It uses existing IEEE JTAEaginell as fast bring-

up on new designs. It provides a way of debugging all devices accessible to the processor in the same way the
processor would access those devices itself. Using EJTAG, a debug probe can access all the processor
internal registers and caches. It can also access devices connected to the Lexra Bus, bypassing internal caches
and memories.

Software debug is enhanced by EJTAG features that allow single-stepping through code and halting on
breakpoints (hardware and software, address and data with masking). For debugging problems that are
artifacts of real-time interactions, EJTAG gives real-time Program Counter trace capabilities from which an
accurate program execution history is derived. For the code-system perspective, PC profiling provides
statistical analysis of code usage to aim code optimization.

Overview

A debug host computer communicates to the EJTAG probe through either a serial or parallel port or Ethernet
connection. The probe, in turn, communicates to the NetVortex EJTAG hardware via the included IEEE
1149.1 JTAG interface. Through the use of the JTAG TAP controller, probe data is shifted into to the EJTAG
data and control registers in the LX8000 to respond to processor requests, DMA into system memory,
configure the EJTAG control logic, enable single-step mode, or configure the EJTAG breakpoint registers.
Through the use of the EJTAG control registers, the user can set hardware breakpoints on the instruction
cache address, data cache address or data cache data values.

When EJTAG is included in a configuration physical address range OxFF20_0000 to OxFF3F_FFFF is
reserved for EJTAG use only and should not be mapped to any other device.

Currently, Embedded Performance Inc. (EPI) and Green Hills Inc. provide EJTAG debuggers and probes for
the NetVortex. Information on these products is available at the following web sites.

EPI Inc.: http://www.epitools.com
Green Hills Inc.: http://mww.ghs.com

LX8000 EJTAG implements all required features of version 2.0.0 of the EJTAG specification, and includes
support for the following features:

* Processor access of host via addressing of probe memory space.
» Host probe can DMA directly into system memory or I/O devices.
» Hardware breakpoints on internal instruction and data busses.

* Single-step execution mode.

1. With the internal PC trace buffers available in NetVortex, the full EJTAG feature-set can be accessed through just 4 JTAG pins -
TCK, TDI, TDO and TMS.

Lexra Proprietary & Confidential -69- Release 1.9

LEN% April 2, 2001 NetVortex

* Real-time Program Counter Trace.

» Debug exception and two new debug instructions: one for raising a debug exception via
software, and one for returning from a debug exception.

7.2.1. |EEE JTAG-specific Pinout

IEEE JTAG pins used by EJTAG are shown below. These are required for all EJTAG implementations.
JTAG_TRST N is an optional pin. In NetVortex with internal PC trace buffers it is not used.

Table 29: EJTAG Pinout

Signal Name Direction Description

JTAG_TDO_NR Output Serial output of EJTAG TAP scan chain.

JTAG_TDI Input Serial input to EJTAG TAP scan chain.

JTAG_TMS Input Test Mode Select. Connected to each EJTAG TAP controller.
JTAG_CLOCK Input JTAG clock. Connected to each EJTAG TAP controller
JTAG_TRST_N Input TAP controller reset. Connected to each EJTAG TAP controller.?

a. This pin is optional in multiprocessor configurations

Table 30: EJTAG AC Characteristics 1

Signal Parameter Condition Min Max Unit
JTAG_CLOCK Frequency <1 40 MHz
Duty Cycle 40/60 | 60/40 | %
JTAG_TMS Setup to TCK rising edge 1.8v 5 ns
Hold after TCK rising edge 1.8v 5 ns
JTAG_TDI Setup to TCK rising edge 1.8V 5 ns
Hold after TCK rising edge 1.8V 5 ns
JTAG_TDO_NR Output Delay TCK falling edge to TDO | 1.8V 0 7 ns

Table 31: EJTAG Synthesis Constraints 2

Signal Name Probe Budget Core Budget Slack remaining for other logic
JTAG_TDO_NR 0to -7ns 11.5ns 13.5t0 20.5ns

JTAG_TDI 5ns 13.5ns 6.5ns

JTAG_TMS 5ns 13.5ns 6.5ns

1. Based on EPI Interface Specifications for MA3{Gind MAJICLUS ™™
2. Based on 25ns JTAG clock period.

Lexra Proprietary & Confidential -70- Release 1.9

LEN% April 2, 2001 NetVortex

7.3. Single Processor PC Trace

The LX8000 EJTAG includes support for real-time Program Counter Trace (PC Trace). When in PC Trace
mode, the LX8000 will serially output a new value of the program counter whenever a change in program
control occurs (i.e. a context switch, branch or jump instruction, or an exception).

When the PC Trace option is set to EXPORT in Iconfig, the following signals will be output from the
LX8000: DCLK, PCST, and TPC. These are described in more detail in the following subsections.

The DCLK output is used to synchronize the probe with the LX8000’s SYSCLK.

The PCST (PC Trace Status) signals are used to indicate the status of program execution. Example status
indications are sequential instruction, pipeline stall, branch, or exception.

The TPC pins output the value of the PC every time there is a change of program control.

7.3.1. PC Trace DCLK - Debug Clock

The maximum speed allowed for the Debug Clock (DCLK) output is 100MHz (as an EPI probe
requirement). As cores typically run in excess of this speed DCLK can be set to a divided down value of
SYSCLK. This is set by the DCLK N parameterlgonfig, which indicates the ratio of SYSCLK frequency

to DCLK: 1, 2, 3 or 4.

7.3.2. PC Trace PCST - Program Counter Status Trace

The Program Counter Status (PCST) output comprises N sets of 3-bit PCST values, where N is configurable
as 1, 2, 3 or 4 vidconfig. A PCST value is generated every SYSCLK cycle. When DCLK is slower than the
LX8000's SYSCLK, up to N PCST values are output simultaneously.

7.3.3. PC Trace TPC - Target Program Counter

The bus width of the Target Program Counter (TPC) output is user configured in Iconfig via the “M”
parameter to be one of 1, 2, 4 or 8 bits. When change in program flow occurs the current PC value is sent out
of TPC. As the PC is 32-bits wide, the number of TPC pins affects how quickly the PC is sent. For example,
if the TPC is 4 bits wide the PC will take 8 DCLK cycles to be sent. If another change in flow occurs while
the PC of the previous change is being transmitted, the new PC will be sent and the remainder of the previous
PC will be lost.

The TPC bus also outputs the exception type when an exception occurs. The exception type field-width is
either 3- or 4-bits depending on whether or not vectored interrupts are present. This is covered in more detail
below.

To reduce pinout, the TDO output is used for the least significant bit of TPC (or the only bit if “M” is set to 1).

Lexra Proprietary & Confidential -71- Release 1.9

LEN% April 2, 2001 NetVortex

7.3.4. Single-Processor PC Trace Pinout

Table 32: Single-Processor PC Trace Pinout.

Signal Name 110 Description

JP;'_TPC_DR O/P | The PC value is output on these pins when a PC-discontinuity occurs®

M bits

JPT_PCST_DR o/P PC Trace Status: Outputs current instruction type every DCLK

N*3 bits

JPT_DCLK o/P PCST and TPC clock. Frequency determined as a fraction of SYSCLK
via the N parameter. Maximum frequency of DCLK is 100MHz.

a. TPC[0] is multiplexed with TDO in the single-processor PC Trace solution.

Table 33: Single-Processor PC Trace AC Characteristics !
Signal Parameter Min Max Unit
JTAG_DCLK Frequency DC 100 MHz
DCLK High Time 4 ns

Low Time 4 ns
TPC Setup to DCLK falling edge at probe 0 ns
Hold after DCLK falling edge 4 ns
PCST Setup to DCLK falling edge at probe 0 ns
Hold after DCLK falling edge 4 ns

7.3.5. Vectored Interrupts and PC Trace

The EJTAG PC Trace facility specifies a 3-bit code be output on the TPC output when an exception occurs
(the PCST pins give the EXP code). In order to distinguish the eight vectored interrupts in the NetVortex from
all other exceptions, a 4-bit code is used instead.

For all exception®ther than vectored interrupts, the most significant bit of the 4-bit code is zero and the
remaining 3-bits are the standard 3-bit code. Note that this includes the standard software and hardware
interrupts numbered 0 through 7.

For vectored interrupts, the most significant bit is always 1. The 4-bit code is simply the number of the
vectored interrupt (from 8 through 15) being taken.

Since the target of the vectored interrupt is determined by the contents of the INTVEC register, the debug
software which monitors the EJTAG PC Trace codes must be aware of the contents of this register in order to
trace the code after the vectored interrupt is taken.

For probes that do not support a 4-bit exception code, the NetVortex can be configured via the
EJTAG_XV_BITS Iconfig option to use only the 3-bit standard codes. In that case, if a vectored interrupt is
taken, the 3-bit code for RESET will be presented.

1. Based on EPI Interface Specifications for MA3{Gind MAJICLUS ™™

Lexra Proprietary & Confidential -72- Release 1.9

LEN% April 2, 2001 NetVortex

7.3.6. Demultiplexing of TDO and TDI During PC Trace

In normal EJTAG PC Trace, TDI and TDO are multiplexed with the debug interrupt (DINT) and the Isb of
the TPC (TPCI0Q]) when in PC Trace mode. This reduces the number of pins required by PC Trace, but has
the unfortunate side-affect of preventing any access to EJTAG registers during PC Trace.

In order to allow access to EJTAG registers during PC Trace, and to facilitate PC Trace in multiprocessor
environments, the Iconfig option JTAG_TRST_IS_TPC=YES causes TDI and TDO to be demultiplexed
such that TRST is used as TPC[0] and DINT is generated via EJTAG registers. Note: setting this option may
require changes in EJTAG probe hardware. Check with probe manufacturer for details.

7.4. Multiprocessor EJTAG

In the multiprocessor case Lexra’s EJTAG solution enables independent, simultaneous control of each
processor with the same pinout as the single-processor case. Each processor has its own EJTAG block and
TAP controller. The TAP controllers are daisy-chained together such that the TDO from the first processor is
connected to the TDI of processor 2, and the TDO of processor 2 is connected to the TDI of processor 3. The
TDO of the last processor on the chain is connected to the EJTAG probe.

7.4.1. Connectivity Requirements

In order to allow seamless operation with external probes, Lexra’'s EJTAG TAP controller chain must have no
register stages between it and the external probe. Any multiplexing of the external pins must be set such that
there is a direct connection to and from the Netvortex TAP controller chain while using EJTAG.

Netvortex
[x8000 [x8000 IXx8000 [x8000 Ix8000
DI [[e
——»{+——] T TDO——TDI TDO — —
Probe | 1po TAP CONTROLLERS
¢—+——TD0 _ TDI| {Too TDI} o0 T — —
[[
IX8000 IX8000 Ixgoo0| " |Ix8000 Ix8000

Figure 7: Construction of Chained TAP controllers for Multiprocessor
EJTAG

7.4.2. Multiprocessor PC Trace Using Internal Trace Buffers

In multiprocessor systems, traditional PC trace solutions become impractical due to the number of pins
needed for each processor and the mismatch between processor and probe speeds. By using internal PC trace
buffers no external PC trace pins are required, providing full multiprocessor EJTAG and PC trace capability
using just 4 pins. The buffers allow real-time compressed PC trace information for each processor to be
buffered on-chip and scanned out serially using existing JTAG pins at probe clock speeds. The program flow
can then be reconstructed externally to give an accurate history of the execution of programs running on each
processor.

Lexra Proprietary & Confidential -73- Release 1.9

LEKIW—\ April 2, 2001 NetVortex

The PC Trace buffer keeps a history of all non-sequential changes to the PC such as branches, jumps and
exceptions. On each non-sequential PC change a buffer entry is written which contains the current PC, the
current context, whether or not a trigger point occurred since the previous frame and optionally two
characteristic counters - the number of sequential instructions and the number of stall cycles since the
previous buffer entry. The size of the sequential instruction count field is configurable from 2 to 8 bits. The
stall cycle count field is also configurable and is split into 2 parts - mantissa and exponent. Both mantissa and
exponent can have widths of O to 4 bits. If the mantissa width is set to zero the stall cycle count field is
removed from the buffer.

The buffer width ranges from 36 to 58 bits depending on the amount of bits allocated to the characteristic
counters and the number of contexts. The depth of the buffer is a trade-off between the amount of history
required and the amount of die are available. It is configurable in powers of two from 16 frames upwards with
a typical value of 64 frames.

Lexra Proprietary & Confidential -74- Release 1.9

LEN% April 2, 2001 NetVortex

8. NetVortex Crossbar Interconnect

The crossbar interconnect prevents processor-device communication from becoming a system bottleneck.
The crossbar network supports a subset of the full LBus transaction types:

» Write (processor to device).

» Split read request (processor to device).

» Write with split read request (processor to device)

» Split read data (device to processor).
The crossbar does not support line read transactions. When used with the crossbar, packet processors may not
include instruction cache or data cache. The processor uses 64-bit split reads to fill the instruction RAM
(IMEM). The processor also converts all non-split load instructions to split loads. No context switch is
performed for converted transactions, and the processor is stalled until the load completes. This transparent
mode of operation is intended to be used for system initialization and other non-critical tasks.
Split read transactions that are generated by converting non-split transactions are referrecetpoasd
transactions. Split read transactions that are generated through the normal mechanisms are sometimes

referred to abackground transactions.

The crossbar does not support EJTAG DMA operations. However, software running on the probe may still
access devices by jamming the appropriate instructions into a packet processor.

The organization of the crossbar network is centered around a 16 processor, 6 device configuration. A special
interface is also included to allow an additional (possibly non-NetVortex) processor to access devices that are
attached to the crossbar.

General characteristics of the 16 processor, 6 device system are:

» Processor and device interfaces support full duplex operation. That is, transactions can
pass simultaneously in both directions.

* Aprocessor may pass one write, split-read or write-split-read request to the crossbar every
two cycles. These are converted to single cycle transactions within the crossbar network.

» Processors service split data responses at the maximum rate of one every two cycles.

* A device may respond to more than one device ID. For all other purposes, a multi-ID
device appears to the crossbar as a single device.

» Devices operate as Write Descriptor targets, or memory storage devices. The two modes
of operation may not be mixed within a single device.

» Devices may generate and accept transactions at the rate of one per cycle.
* There is no processor-to-processor or device-to-device traffic in the system.

» Transactions involving a given processor and given device are delivered in order. There are
no other ordering guarantees.

Lexra Proprietary & Confidential -75- Release 1.9

LEN% April 2, 2001 NetVortex

8.1. Processor-to-Device Paths

Figure 8 below illustrates the processor-to-device crossbar network. The numbers just above each queue
indicate which device(s) may be targeted by transactions held in the queue.

» Thefirst column of queues receive write, split-read and write-split-read requests from each
processor, and prevents threads from blocking while a request waits for a path through the
crossbar interconnect. These queues are implemented in the processor’s LBC.

* The connection to the crossbar uses a modified LBC interface that allows the processor to
simultaneously source a transaction and receive split data resulting from an earlier request.

» The 4x6 crossbars sort the requests from the per-processor queues into per-device queues.

» Asub-unit of four processors, one 4x6 crossbar and associated queues makes a convenient
tile used for the design of a 16 processor system.

» If each processor attached to the 4x6 crossbar issues a request every two cycles and
requests are evenly distributed among 6 devices, there is an 88% probability that a request
will be accepted by the crossbar. A request every four cycles will result in a 94%
probability of acceptance. (See below for the source of these figures).

» From the crossbar output queues, 5:1 muxes transfer requests to devices. With adequate
gueue depth at the crossbar outputs, the devices can be fully utilized.

* Uniform behavior is provided throughout the crossbar network. That is, if processors are
performing similar work, they will experience similar delays through the crossbar.

Lexra Proprietary & Confidential -76- Release 1.9

LEK'% April 2, 2001 NetVortex

processors | xbar layer 1 ; xbar layer 2 devices
lbc @ |
oL T |
: 605 | Hdz | N :
- | O do
Pt =1l 4x6 == TllIH-~) - do
do5 | . ‘ -
p2 (— [[[[}-~ crossbar ;;ﬂ}f' // il
o 4do-5 | H;;ﬂ}ﬁ’ | :
| T 2
\ w0 1|/ I o
I B
Lo i // Inasllig X
- do-5 : Hdz | / B :
- 4x6 [
p5 %m—k- —hd3 : / N :
| |
| %% | | crossbar—= ([~ /1 |
P | “a 1l e
do-5 - : /
p7 = [l (ﬁ]}ﬂ N il
[> [[
: HdO : / 6 x :
“ -
p8 [l — [[[[—= 51 mux |
do-5 ! d2 I I
P9 —> : 4x6 — : [: d3
do5 a [o d3
p10—|[|] crossbarag;ﬂ}f' | 1
" dos | Hds | :
p H" T L |
| w | | |
do-5 | = \ / | da
T =iy iy
do-5 ! d2 | / !
s~ 46 T |
| | |
014 T crossbar— [// |
| | |
DlS%ﬁﬁ]ﬂ‘* = L] = ds5
| — |
! | device !
: :4> management :
| | interface |

Figure 8: Crossbar for 16 Processors and DMI to 6 Devices

The probability of request acceptance quoted above is obtained from the formula

ow = = -2

Lexra Proprietary & Confidential -77 - Release 1.9

LEN% April 2, 2001 NetVortex

where
BW aggregate bandwidth of crossbar, in transfers per cycle
M number of devices
pReq probability that a processor makes a request
N number of processors

The equation foBW is accurate to within 8% fovl/N > 0.75. Given the bandwidth, the probability that a
processor’s request is accepted by the crossbar is

BW

pAcc = N x bReg DReq

8.2. Device-to-Processor Paths

Figure 9 below illustrates the device to processor crossbar network. The numbers just above each queue
indicate which processors(s) may be targeted by transactions held in the queue.

» The topology is compatible with the organization of the processor-to-device network.
» The right-most column of queues are associated with the devices, and are fairly shallow.

» A simple fanout interconnect layer transfers data from the device queue to the crossbar
input queue dedicated to that device. With adequate queueing, the device interfaces can be
fully utilized.

e The blocking effects of the device to processor crosshar are negligible because the
utilization is typically low, and the ratio of processors to devices is typically 3 to 1. Note
that the simple formula given in the previous section cannot be used to estimate
performance, because tEN criteria is not met.

1. “Performance of Multiprocessor Interconnection Networks”, L Bhuyan e¢E&E Computer, Feb. 1989

Lexra Proprietary & Confidential -78- Release 1.9

LEN% April 2, 2001 NetVortex

processors | xbar layer 1 ; xbar layer 2 devices
T po-3 | |
PO | 0-3‘% N :
PO j+—{Illl= T~ N |
I |
] pl : 4%6 p0-3 | h ~ | ! po-16
pL <[~ el o
p0-
[[g
02 "« | crossbar = L= y ///’7 :
‘ -
/
| -« |
b3 P 03 | |/ ///7 |
| | / |
| pa7 | / I ' po16
|
pa | amilliy S eI
p4 “ <~ = o
<
p5 : p4-7 | / // :
p5 <—{[[[[< 4x6 &D];gk A
p -
6 ! | / |
- | |
p6 ~r| crossbar per | | o
7 | 4_‘ P / | pO-
o7 |« T[T et |1 ey 02
| {7 7 |
[ps-11 : / :
[<
Gt el SFL
p - -
o | oair .| 1:5 fanout |
p9 - 4x6 <[=<— [| po-16
0 p8-11 | | ~— d3
| < |
p10 < crossbarn™ Uit) ‘
|]
pll -] P&l | | |
| < |
: p12-15 : I :
12 P12 | p1215 | // B aa
p '—DEI'T - |
p13 | p12-15 ! / !
IR Il |
[plz- [[
14 || crossbar < | |
s I ;
15 | ~ | p0-16
p15 < p12-15 | -« g5
| </ |
| | |
! ! device !
! 1‘7 management !
: : interface :

Figure 9: Crossbar for 6 Devices to 16 Processors and DMI

8.3. Bandwidth and Latency

The crossbar network can servi&freg requests per second directed from the processors to the devices,
whereN is the number of devices, aritkq is the operating frequency of the crossbar. Split data return
transactions are "free" with the crossbar, because they use full duplex return paths. The crossbar operates at

Lexra Proprietary & Confidential -79- Release 1.9

LBGW—\ April 2, 2001 NetVortex
___|

250 MHz in 0.1%m technology. Assuming 1 in 5 transactions is a split read request, the crossbar delivers
about 10 times total processor-device bandwidth of a single shared bus, with much lower latencies.

The timing diagram below illustrates the flow of a single transaction from a processor to a device, assuming
an idle system and synchronous operation.

i i 3 4

CLK / /S S]
LOCAL_BUS
caus IR ATD) S S
Lec_sur I AD (I

LBUS_ADDR
XB_DEV_REQ i i i i i i
LBUS DATA_W_
XB_DEV_GNT }
XB_ENTRY

XB_MUX_REQ
XB_MUX_GNT
DEV_DATA
DEV_LOAD

D0013

Figure 10: Processor to Device Transaction Flow

Cycle Description:

1. Local Bus - request and data are sent from the processor to the cache controller via the Local
Bus.

2. CBus - request and data are sent from the caches to the LBC via the CBus.

3. LBC Buf - one cycle to go through the transaction queue in the LBC. This queue is the LBC
write buffer. All transactions to the crossbar go through the LBC write buffer.

4. LBC Addr/Crossbar Device Request - first cycle on the LBus, address is sent to crossbar inter-
face. Address is decoded and request is sent to crossbar arbiters (one per device). Requests are
registered in arbiters.

5. LBC Data/Crossbar Device Grant - second cycle on the LBus, data is sent to the crossbar inter-
face. Device Grant is given and merged Address/Data is sent across the crossbar to a crossbar
device queue.

6. Device Queue/Crossbar Mux Request - Crossbar entry is seen on queue output and request to
crossbar mux arbiter is sent. Request is registered in the arbiter.

1
Lexra Proprietary & Confidential -80- Release 1.9

m April 2, 2001 NetVortex

7. Mux Grant - Crossbar Mux arbiter gives grant and sends load signal to device. New transaction
is loaded into device.

The timing diagram below illustrates the flow of a single transaction from a device to a processor, assuming
an idle system synchronous operation.

1 2 3 a5 6

CLK__/ \ / __/ \ A N A /[
RdDataRdy ___ J— \ | | | |
RdDequeue | T\ | | | |
Data_to_XB
xB_Rd_Q I Y DATA Y
XB_Rd_Req
XB_Rd_Gnt

Data_to_LBC

CBUS (| DATA)

Local_Bus (DATA)

D0014

Figure 11: Device to Processor Transaction Flow

Cycle Description:
1. Device asserts RdDataRdy to send split data to processor.

2. Crossbar interface asserts RdDequeue to accept the split data. Split Data transferred to Read
Queue in crossbar.

3. Crossbar Read Queue asserts request to transfer read data across crossbar to processor inter-
face.

4. Read Grant is given and Data is dequeued from crossbar read queue and sent to LBC.
5. Data sent from LBC to cache interface via CBus.

6. Data returned to processor via Local Bus. NOTE: The local bus is 32 bits wide. Two cycles are
needed to return the data for a twinword read.

8.4. Crossbar Port Configuration

The interconnect supports configurations of 1, 2, 3, 4, 5 or 6 devices, and 4, 8, 12 or 16 processors, plus a port
that provides host access to the devices. The RTL is optimally reduced to support the configured number of
processors and devices.

8.5. Address Decoding

The crossbar interface accepts all requests from a processor and decodes the address to determine which
device the request is targeting. The decode is based leorifig options chosen for each device.

There are two types of devices supported on the crossbar - Memory mapped and write descriptor.

Lexra Proprietary & Confidential -81- Release 1.9

LEW% April 2, 2001 NetVortex

8.5.1. Memory Mapped Devices

When a device interface is configured as a memory mapped device, an address window is specified using
Iconfig. The window is described with a base address and mask. The upper 12 bits of the address are
configurable, allowing for a minimum window size of 1 Mb. The address mask is also a 12-bit value and
allows the window size to range between 1 MBytes and 2 GBytes. The crossbar uses this base address and
mask to compare with the upper 12 bits of the request address to determine if it is within the address window
for that device. There is only one address window for each memory mapped device interface.

8.5.2. Write Descriptor Devices

NetVortex supports up to 32 write descriptor devices. Each device port configured to be used as a write

descriptor interface has an associated 32-bit device ID mask to indicate which device ID(s) are accepted by
the device attached to that port. More than one bit in the ID mask may be set, allowing a single device to

respond to multiple device IDs. For write descriptor requests, the crossbar uses ADDR[7:3] of the request
and the device masks to determine the target crossbar device port.

All write descriptor devices are located in a single 1 MByte window. This window is selectablécorifiy.

It cannot also be used by memory mapped devices. This results in a hole in the address space, because
descriptor devices only use a small portion of this window. All memory mapped device windows and the 1
MByte write descriptor memory window must be mutually exclusive.

8.5.3. Address Error Handling

The crossbar detects two error conditions for processor initiated requests. If a request does not address a
configured device, the crossbar will discard the request and assert the per-processor error flag. If a processor
issues a split read request to a write-only device, the crossbhar discards the request and asserts the per-
processor error flag. The thread ID associated with the request is also captured. These types of errors typically

occur during software debug.

The crossbar module hierarchy gathers the error signals to provide the outputs listed below. Each processor
has it's own set of outputs. In the signal name, <n> represents the processor number, from 0 through 15.
Customers may use these output signals as appropriate for their system level error detection and recovery
strategy. For example, the error signals may be captured by a custom coprocessor that interrupts the affected
processor, or the signals may be passed to centralized error reporting and handling hardware.

Table 34: Crossbar Error Reporting Signals.

Direction Signal Description

output XB_ErrBadAddr<n> Pulsed high for one cycle when the pro-
cessor issues a request with an address
that does not decode to a valid device.

output XB_ErrinvidRd<n> One bit per processor, pulsed high for one
cycle when the processor issues a read
request to a device that does not have a
read return path.

output XB_ErrThread<n>[3:0] Identifies the local thread ID that caused
an error signalled through XB_ErrBadAddr
or XB_ErrinvidRd for a given processor.

Lexra Proprietary & Confidential -82- Release 1.9

LEW% April 2, 2001 NetVortex

8.6. Arbitration

Arbitration in the 4x6 crossbar unit is performed with independent per-queue arbiters. Each arbiter
implements windowed, round-robin selection among the processors that compete for a given output queue.

At the next level in the interconnect, each device has the same type of independent dedicated arbiter to select
one of four requests in the crossbar's per-device queues.

The same approach is used for the split data return pathways through the crossbars back to the processors.

8.7. Asynchronous Interface

An optional asynchronous boundary is implemented at the 4x6 crossbar's queues (within the crossbar layer 1
column shown in Figure 8 and Figure 9), allowing the processor and 4x6 crossbar speed to be decoupled
from chip level interconnect. Implementing the async interface at this point preserves as much bandwidth as
possible from the processor and through the 4x6 crossbar, compared to using the less efficient async interface
in the LBC. However, this does require most of the 4x6 crossbar’s logic and local interconnect to run at full
processor speed.

8.8. Queue Depths

The queues in the LBC may be sized appropriately to prevent local blocking between the processor and
crossbar. The LBC's output queues should not be used as extra overflow queuing for the crossbar when any
particular device queue is full. The depth of the processor’s outgoing command queue is RTL-configurable in
the range of 2 to 16 command entries. The depth of the processor’s incoming split data queue is RTL-
configurable in the range of 2 to 16 twinword entries.

The LBC will stall the processor if the processor executes a write, split-read or write-split-read while the LBC
output queue is full.

Because the behavior of and demand for devices may differ, each device-dedicated queue in the crossbar
layer 1 (see Figure 8 and Figure 9) may be sized specifically for its device. Generally, the depth of these
gueues should be determined by device access patterns and crossbar performance. The depth should not be
related to performance characteristics of the actual device. The FIFO depths in the first level crossbar
modules are RTL-configurable for 4, 8 or 16 entries.

The devices include dedicated queues with depths that are related to overall access rates and device latency.

8.9. Instruction RAM Fill

Instruction RAMs of the packet processors are filled under the control of a hardware state machine in the
processor, using split reads over the crossbar network. The state machine sequence is initiated by software
with a write to the COPO CCTL register. It is assumed that IRAM fill performance is not critical.

8.10.Device Management Interface

The crossbar’s optional Device Management Interface (DMI) provides a port for accessing the crossbar
devices with a management processor or other hardware. The DMI provides support for all crossbar
operations to the devices. For memory devices, this includes writes and split reads. For write descriptor
devices, this includes writes and write split reads.

8.10.1. DMI Read and Write Request Interface

The table below lists the DMI signals that are used by a management processor (or similar subsystem) to

Lexra Proprietary & Confidential -83- Release 1.9

LEdasA

April 2, 2001

NetVortex

transfer a write or read request to the DMI.

Table 35: DMI Request Signals

Direction Signal Description

mp->xb DMI_DevReqgs[5:0] Request to individual devices

xb->mp DMI_Gnt Grant from crossbar, request has been
taken

mp->xb DMI_ProcNum([7:0] Processor Number

mp->xb DMI_Cmd[3:0] Request Command

mp->xb DMI_Size[2:0] Request Size

mp->xb DMI_ThreadID[3:0] Request Thread ID

mp->xb DMI_Addr[31:0] Request Address (for memory mapped
devices)

mp->xb DMI_DevID[4:0] Request Device ID (for WD devices)

mp->xb DMI_Data[63:0] Request Write Data

To send a new request to a device, the request line (DMI_DevReqgs) associated with that device is asserted.
Only one request line may be asserted at any time. DMI_Cmd, DMI_Size, DMI_Data, and DMI_GTid must
supply valid request information. For memory mapped devices, DMI_Addr must have a valid address for that

device. For Write Descriptor devices, DMI_DevID must have a valid Device ID for that device.

The crossbar asserts DMI_Gnt when it accepts the request, which will be no earlier than one cycle after the

request was initiated. The crossbar uses the request information that is sampled in the cycle prior to asserting
DMI_Gnt. The crossbar ignores new requests until the it has granted the current request. The interface is

pipelined, allowing the crossbar to capture information for the next request, if any, while it grants the current

request.

DMI_ProcNum - Processor Number

This 8-bit value is used when split read data is being returned from the devices to identify that
the data is for the DMI. It must not match any of the GTID[11:4] values that are assigned to

packet processors attached to the crossbar.

DMI_Cmd - Request Command
0000 - <reserved>
0001 - write
0010 - background split read request
0011 - write split read
001x - <reserved>
0110 - foreground split read request
0111 - <reserved>
1xxx - <reserved>

DMI_Size - Request Size
000 - 1 byte
001 - 2 bytes
010 - 1 word
011 - 2 words
100 - 4 word

Lexra Proprietary & Confidential

-84-

Release 1.9

m April 2, 2001 NetVortex

101 - reserved
110 - reserved
111- reserved

Note: for write split read commands, the size is for the read request (either 1 or 2 words) since the write must
be 2 words.

DMI_ThreadID - Request Thread ID
This value must be used to differentiate read requests when the hardware attached to the DMI
can have multiple outstanding read requests. For split read requests, the value will be returned
with the split read data.

DMI_Addr - Request Address

The Address is needed for all memory mapped devices. The full 32-bit physical address is sent
to the device.

DMI_DevID - Request Device ID
The Device ID is used for write descriptor devices. It should be valid for any write descriptor
operations.

RegData -Write Data
Size is either 32 bits for memory mapped devices or 64 bits for write descriptor devices.

8.10.2. DMI Request Waveforms

In these waveforms, Device 0 (a value of 1 in the DMI_DevReqs) is used, but the logic is the same for any
device request.

ok [\

DMI_DevReqgs A A 1

DMI_Gnt
DMI_Addr[31:0) I
DMI_Cmaf3:0] I
DMI_Size[2:0] I
DMI_ThreadID{3:0] I
DMI_Data(63:0] I

D0015

!
/

> B> B B P

Figure 12: Single DMI Request Without Grant Delay

For all transactions, the timings for DMI_Addr, DMI_Cmd, DMI_Size, DMI_ThreadID and DMI_Data are

Lexra Proprietary & Confidential -85- Release 1.9

LEK'% April 2, 2001 NetVortex

all the same. For the waveforms below, only DMI_Addr is shown.

CLK_/—_/—_/—_/—

DMI_DevReqs \ A X
DMI_Gnt : ‘ / \—
DMI_Addr(31: 0]_(A S
D0016

Figure 13: Single DMI Request With Grant Delay

T SRR E VI S W A W A
DMI_DevReqs X A X B X

DMI_Gnt | / _
DMI_Addr[31:0) IR Y A X B —

D0017

Figure 14: Back to Back DMI Requests Without Delay

CLK [\ [\ [\ [\ [
DMI_DevReqs X A X B) C A 1
DMI_Gnt | | / | __
DMI_Addr[31:0] X A — B X Cc X
D0018

Figure 15: Multiple Back to Back DMI Requests With Grant Delay

8.10.3. DMI Split Read Data Interface

The table below lists the signals that are used by a management processor (or similar subsystem) to receive
split read data from the DMI.

Table 36: DMI Split Read Data Signals

Direction Signal Description

xb->mp DMI_RdValid Split Read Data Valid

xb->mp DMI_RdCmd[1:0] Split Read Data Command

xb->mp DMI_RdData[63:0] Split Read Data

xb->mp DMI_RdThreadID[3:0] | Split Read Thread ID

xb->mp DMI_RdSize[1:0] Split Read Size

mp->xb DMI_RdBusy Busy signal from management processor

Lexra Proprietary & Confidential -86- Release 1.9

m April 2, 2001 NetVortex

When a split read response from a device has a Processor Number that matches DMI_ProcNum, the crossbar
forwards split read the DMI interface. DMI_RdValid indicates that split read data is being sent.
DMI_RdData, DMI_RdThreadID and DMI_RdSize will all have the valid split read information.

If the hardware connected to the DMI cannot accept split read data, it should assert DMI_RdBusy.

DMI_RdCmd - Split Read Data Command
00 - background split read data
01 - foreground split read data
1x - <reserved>

DMI_RdSize - Split Read Data Size
00 - 1 byte
01 - 2 bytes
10 - 1 word
11 - 2 words

8.10.4. DMI Read Data Waveforms

CLK / \ /

DMI_RdValid ‘ \
DMI_RdData[63:0] I A S
DMI_ThreadiD[3:0] T A I
DMI_Cmd[l:O]_ A _
DMI_Size[1:0] DI A) B

DMI_RdBusy

D0019

Figure 16: Single DMI Read Data Response Without Delay

Lexra Proprietary & Confidential -87- Release 1.9

m April 2, 2001 NetVortex

Cbk______ [[- [

DMI_Rdvalid [
DMI_RdData[63:0] I
DMI_Thread!D[3:0] T
DMI_Cmd[1:0] I
DMI_Size[1:0] I
DMI_RdBusy—X

D0020

il

— EIEEE |

Figure 17: Single DMI Read Data Response With Busy Delay

Cbk______ [" [[

DMI_Rdvald [
DMI_RdData[63:0] I
DMI_ThreadiD[3:0] T
DMI Cmd[l'O]-
DMI_Size[1: 0]-

DMI_RdBusy

0| [0 O] [0

X
X
X
X

> P> P P

D0021
Figure 18: Back to Back DMI Read Data Response Without Delay

(@]
—
E

I

DMI_Rdvalid ______/
DMI_RdData([63:0] I
DMI_ThreadiD[3:0] T
DMI Cmd[1-01-(
DMI_Size[1: O]-

DMI_RdBusy

> > Pl P

T e T
-— 1t |-l ot |

D0022

Figure 19: Back to Back DMI Read Data Response With Busy Delay

8.11.Direct FIFO Interface for Devices

The devices enqueue and dequeue information directly to and from the crossbar interconnect's queues. The
devices do not implement any aspects of the LBus protocol.

Lexra Proprietary & Confidential -88- Release 1.9

LEW% April 2, 2001 NetVortex

8.11.1. Device Request Interface

The crossbar interface for sending requests for each device is optimized via RTL configuration. A device can
either be a memory mapped device, which requires an address but supports only 32-bit writes, or a write
descriptor device, which does not need an address but supports 64-bit writes for write descriptors. Each
interface is configured for either memory mapped or write descriptor lasinfig.

Table 37: Device Request Signals

Direction Signal Description

xb->dev DevReqRdy Load new request

xb->dev ReqCmd[3:0] Request Command

xb->dev ReqSize[2:0] Request Size

xb->dev ReqGTid[15:0] Request Global Thread ID

dev->xb DevBusy Device cannot accept any more trans-
actions

xb->dev RegAddr[31:0] Request Address (memory mapped
devices)

xb->dev RegData[31:0] Write Data (memory mapped devices)

xb->dev ReqDevID[4:0] Write Descriptor Device ID (WD
devices)

xb->dev RegData[63:0] Write Descriptor Data (WD devices)

When the crossbar is ready to enqueue a new request, it asserts DevRegRdy. ReqCmd, RegSize ReGTid,
RegAddr and ReqgData are valid when DevReqRdy is asserted. If DevBusy is asserted, the crossbar cannot
send a new request.

ReqCmd -Request Command
0000 - <reserved>
0001 - write
0010 - background split read request
0011 - write split read
010x - <reserved>
0110 - foreground split read
0111 - <reserved>
1xxx - <reserved>

ReqSize Request Size

000 - 1 byte
001 - 2 bytes
010 - 1 word
011 - 2 words
100 - 4 word
101 - reserved
110 - reserved
111- reserved

Note: for write split read commands, the size is for the read request (either 1,2, or 4 words) since the write
must be 2 words.

Lexra Proprietary & Confidential -89- Release 1.9

m April 2, 2001 NetVortex

ReqGTid - Request Global Thread ID

Same as LBus Global Thread ID. For split read requests, the device should return this value
with the split read data.

RegAddress -Request Address
The Address is needed for all memory mapped devices. The full 32 bit physical address is sent.

ReqDevID -Request Write Descriptor Device ID

The Device ID is provided if more than one write descriptor device is connected to a device
interface. Only available for write descriptor interfaces.

ReqData -Write Data
Size is either 32 bits for memory mapped devices or 64 bits for write descriptor devices.

8.11.2. Device Request Waveforms

(NOTE: waveforms are for memory mapped devices. Write Descriptor devices are identical except RegAddr
is replaced with ReqDevID)

CLK | \
DevRegRdy

ReqCmd[3:0] IR

ReqSize[2:0) I
ReqGTid[15:0] IR
ReqAdc(31:0] I
RegData[31: 01_

DevBusy

> B> P Pl P

D0041
Figure 20: Single Request Enqueue

The crossbar can also issue back-to-back requests with no delay if DevBusy is not asserted.

ck_____ [
DevRegRdy /‘

ReqCmd(3:0] I A Y B
ReqSize[2:0] I A X B
RquTid[lS:O]_j A X B
ReqAddr[31:0] IR A X B
ReqData[31: O]- A X B
DevBusy |

D0042

Figure 21: Back to Back Request Enqueue

Lexra Proprietary & Confidential -90- Release 1.9

LEN% April 2, 2001 NetVortex

DevBusy is used by the device to indicate it is not ready to receive a new request. If DevReqRdy is asserted
concurrent with the assertion DevBusy, the request is ignored and must be regenerated in the next cycle.

CLK ‘
DevReqRdy / _
ReqCmd[3:0] IR A) B B
ReqsSize[2:0] T A X B S
RquTid[lS:O]-j A X B)-
RegAddr[31:0) I A X B)
ReqData[31:0) I A) B) B

DevBusy / \

D0043

Figure 22: DevBusy Asserted Between Two Requests

8.11.3. Device Read Data Interface

The crossbar also accepts split read data to be returned to the processor. Not all devices need this interface,
and each crossbar device interface can be configured cifig.

Table 38: Device Read Data Signals

Direction Signal Description

dev->xb RdDataRdy Read Data Ready

dev->xb RdACmd[1:0] Read Data Command
dev->xb SplitRdData[63:0] Read Data

dev->xb RdGTid[15:0] Read Global Thread ID
dev->xb RdSize[1:0] Read Data Size

xb->dev RdDequeue Crossbar accepts read data

When a device is ready to return split read data, it asserts RdDataRdy for one cycle and drives RAGTid with
the GTid associated with the return data. The crossbar captures and retains RAGTid until it has dequeued the
data. SplitRdData, RdACmd and RdSize are valid the cycle after RdDataRdy is asserted until the crossbar
accepts the data. RAGTid and RdSize should have the same value as the split request sent on ReqGTid and
RegSize. The crossbar asserts RdDequeue when it accepts the data, and the device dequeues the entry.

RdCmd - Split Read Command
00 - background split read data
01 - foreground split read data
1x - <reserved>

DMI_RdSize - Split Read Data Size
00 - 1 byte
01 - 2 bytes
10 - 1 word

Lexra Proprietary & Confidential -91- Release 1.9

LBQW-\ April 2, 2001 NetVortex

11 - 2 words

A crossbar device may need to return 4 words of data for a single request (Quadword split read). The crossbar
accepts a maximum of 2 words of data per transaction, so two separate twinword operations should be used.
For memory devices, the data in Addr[2] = 0 should be returned first. The GTid for both halves of the
guadword data should use the same value as the quadword split read request.

8.11.4. Device Read Data Waveforms

CLK—/—_/—_/—

RdDataRdy /
RAGTid[15: O]_ A
RdDequeue
SpltRdData[63:0] _ A
RdDataCmd]1:0] I A
RdSize[1:0] I A

nNnNaAa

|

Figure 23: Single Split Read Return

Note: SpltRdData, RdDataCmd and RdSize can be driven with RdDataRdy and RdGTid in the first cycle, but
the crossbar will not use them.

If the crossbar interface is not ready to accept the split read data, it will not assert RdDequeue. To avoid
timing problems, the device must not use RdDequeue to gate SpltRdData, RdDataCmd and RdSize at the

device outputs. Instead, these outputs are controlled by registered (next cycle) versions of RdDataRdy and
RdDequeue.

CLK—/—_/—_/—_/—
RdDataRdy /
RAGTid[15: 0]_(A
RdDequeue
SpltRdData[63:0] _
RdDataCmd[l.O]_
Rasize[:0) I X

D0045

|/

B

Figure 24: RdDequeue Delay

A device can issue back to back split read responses. Each RdDataRdy assertion by a device indicates a new
request. If the device issues a new request while a prior request is pending (i.e., issued but not accepted by the

crossbar), the device must re-issue the new request. To do so, the device leaves RdDataRdy asserted for the
second request until the cycle after RdDequeue is

Lexra Proprietary & Confidential -92- Release 1.9

LBG% April 2, 2001 NetVortex

asserted by the crossbar (i.e. the crossbar accepts the first request).

CLK—/—_/—_/—_/—

RdDataRdy / |
RAGTid[15: 0]- A X B
RdDequeue ‘
SpltRdData[63:0] _
RdDataCmd][1:0] I
Rasize[1:0] I X

D0046
Figure 25: Back to Back Split Read Responses without RdDequeue Delay

A
A
A

CLK [\ [[\ [\ [\ [

RdDataRdy ___ / ; ; ; \ 1
RocTidsol N A X B X C —
RdDequeue ‘ /—\—/ 3 _
SpltRdData[63:0] _(A B L C)-
RdDataCmd([1:0] I A X B)4 C)
RdSize[l:O]_(A X R __C)-

D0047
Figure 26: Back to Back Split Read Responses with RdDequeue Delay

1
Lexra Proprietary & Confidential -93- Release 1.9

I mg April 2, 2001 NetVortex

Lexra Proprietary & Confidential -94- Release 1.9

LEM% April 2, 2001 NetVortex

9. NetVortex Test and Set Engine

9.1.

9.2.

9.3.

9.4.

NetVortex includes an optional Test and Set Engine. This module implements an LBus Target that supplies
up to 32 unique semaphores. These semaphores can be used to control access to resources that are shared
among any of the processors and contexts that have access to the LBus.

The remainder of this chapter describes the LBus commands that are supported by the Test and Set Engine as
well as the resources required to implement various numbers of contexts, processors, and semaphores.

The Test and Set Engine responds to the following LBus commands:
» Single Word Read (LW instruction) — basic test and set.
» Single Word Split-Read (LW.CSW) — enqueue and wait for semaphore free.

e Single Word Write (SW instruction) — dequeue wait or clear semaphore
Semaphore Addressing

The Test and Set Engine responds to a range of addresses on the LBus that is programmable using the Lexra
Iconfig utility. Each semaphore occupies the even word of a doubleword in the address range. Up to 32
semaphores are implemented. The base address of the engine must be aligned on a 1MByte boundary, since
the Test and Set Engine’s configurable decoder only compares bits 31:20 of the LBus address. Address bits
7:3 identify the semaphore to be accessed and address bits 2:0 must be zero for double word addressing.
Address bits 19:8 are ignored but should be zero for compatibility with future expansion.

Single Word Read — Basic Test and Set

An LBus single word read request to a semaphore address within the Test and Set Engine provides the basic
functionality. If the semaphore is free, it is atomically marked as held and a value of zero is returned for the
word read. If the semaphore is already held when the request arrives, it remains held and a value of one (in the
least significant bit of the word) is returned for the word read.

Single Word Split-Read — (Enqueue and) Wait for Semaphore Free

An LBus single word split read request to a semaphore address within the Test and Set Engine enqueues the
Processor and Context of the requestor to wait for the semaphore to be free. If the semaphore is already free,
it is marked held and the return response with a value of zero is made as soon as the Engine can gain access to
the LBus. If the semaphore is not free when the request arrives, the Processor and Context of the requestor is
enqueued behind all others waiting for this particular semaphore (if any). Eventually, when this requestor is
the oldest one waiting and the semaphore is dequeued, the return response with a value of zero is made as
soon as the Engine can gain access to the LBus.

Note that the return response for a split read always has a value of zero and always leaves the semaphore in
the held state.

Single Word Write — (Dequeue Wait or) Clear Semaphore

An LBus single word write request to a semaphore address within the Test and Set Engine is used to dequeue
or clear the semaphore. The data associated with the write is ignored. The requestor is also ignored. (See the
examples of semaphore usage below.)

If the queue for that semaphore is empty (no waiting requestors) the semaphore is marked free regardless of
its previous state (free or held). If the queue of waiting requestors is not empty (the semaphore is necessarily

Lexra Proprietary & Confidential -95- Release 1.9

LEN% April 2, 2001 NetVortex

held) the oldest requestor in the queue is removed from the queue, that requestor’s return response is made as
described above (in Section 7.3), and the semaphore remains in the held state.

9.5. RAM Requirements for Semaphore Queues

In order to provide a robust implementation that can withstand the worst case scenario of waiting requestors
without resorting to retry mechanisms, the queues of requestors that are waiting for any of the semaphores are
implemented in RAM. The size of this RAM depends on these three variables:

* Number of semaphores supported

* Number of processors in the system

» Number of contexts per processor

An expression for how the number of words in the RAM is calculated:

S = # of semaphores
P = # of processors in the system
C = # of contexts per processor

16-bit words= glogz(s oPOO)

Table 39: Semaphore Engine RAM Requirements

number of number of contexts per RAM

semaphores processors processor required
4 4 4 64 x 16 bits
4 16 4 256 x 16 bits
8 4 4 128 x 16 bits
8 16 8 1K x 16 bits
16 4 4 256 x 16 bits
16 16 8 2K x 16 bits
24 4 4 512 x 16 bits
24 16 8 4K x 16 bits
32 4 4 512 x 16 bits
32 8 4 1K x 16 bits
32 16 4 2K x 16 bits
32 16 8 4K x 16 bits

9.6. Semaphore Usage for Critical Code Section

The following programming example shows typical usage of a semaphore to protect a critical section of code
that should only be executed while the semaphore is held by the executing thread:

la r1,SEMAPHORE # get semaphore address

Lexra Proprietary & Confidential -96- Release 1.9

LEdasA

April 2, 2001

NetVortex

Iw r2,0(r1) # atomic test and set
beqz r2,CRITICAL_SECTION #if gotit,godo it
nop # delay slot

Iw.csw r2,0(r1) # else wait to get it
nop # delay slot

9.7.

CRITICAL_SECTION:
do critical section
sw r0,0(r1) # release semaphore

END_CRIT_SECTION:

This example assumes that the semaphore will usually be free when it is needed. Therefore, the first check of
the semaphore uses an ordinary read (lw instruction). If the semaphore is free, the critical section is entered
immediately (branch around the Iw.csw). If the semaphore is not free, rather than using a spin loop, which
would consume both processor cycles and LBus cycles, a split read is used (lw.csw instruction) which
enqueues the context in the semaphore’s wait queue and allows another thread to execute. When the
semaphore is later acquired, this thread becomes ready. When this thread resumes execution it immediately
enters the critical section since it is guaranteed to hold the semaphore at that point.

At the conclusion of the critical section, during which the resources protected by the semaphore may be
accessed, the semaphore is released with a simple write (sw instruction).

It was noted above that a write operation to a semaphore address always dequeues or clears the semaphore,
regardless of the requestor or the write data. In the above coding example only the holder of the semaphore
would actually clear the semaphore. Maintaining that requirement is actually no different than any other
operation performed within the critical section.

Semaphore Usage for Cross Processor Wait and Post

Within one NetVortex processor a pair of threads can use the CSW and POSTCX instructions to implement
Wait and Post semantics for communication between a producer thread and a consumer thread. Since the
POSTCX instruction only updates the CXSTATUS register of another context within the same processor,
these instructions cannot be used for communication across processors. The semaphore facility in the Test
and Set Engine can be used to implement this functionality, as follows:

Let GTID1 be the Global Thread ID of the consumer thread that is ready to wait for the producer thread
which has a Global Thread ID of GTID2. The following code sequences allow for cross processor Wait and
Post semantics, assuming that both SEMAPHORE1 and SEMAPHORE?2 have both been placed in the held
state by initialization code using simple LW instructions.

In GTID, the consumer executes:

ready to wait
la r1,SEMAPHORE1

get semaphore address
la r3,SEMAPHORE?2 # clear SEMAPHORE2 to
sw r0,0(r3) # indicate WAIT to GTID2
lw.csw r0,0(r1) # wait for SEMAPHOREL to be cleared
nop # delay slot
consume ... # after context switch
In GTID2, the producer executes:
produce ... # ready to post
la r3,SEMAPHORE?2
Iw r2,0(r3) # ensure GTID1 waiting

Lexra Proprietary & Confidential

-97- Release 1.9

LEN% April 2, 2001 NetVortex

9.8.

bnez r2, 0THERWORK # do something else if not
la r1,SEMAPHORE1 # clear SEMAPHOREL to
sw r0,0(r1) # indicate POST to GTID1

In this example, the consumer waits for SEMAPHORE1 before consuming. The producer clears
SEMAPHORET1 to post that it has produced. Note that the producer’s clearing operation can take place any
time after the consumer is ready to wait for the semaphore. Usually this will be after the wait begins. In the
rare event that the clear occurs before the LW.CSW, the operation will still be correct even though the
consumer is never enqueued for the semaphore. Also note that the LW.CSW always leaves SEMAPHORE1
in the held state for the next wait.

In case the producer is ready before the consumer, SEMAPHORE1 must not be cleared. The purpose of
SEMAPHORE?Z? is to prevent this from happening. The consumer clears it to indicate to the producer that the
consumer is about to begin waiting. If the producer finds it held, it can do some other work (or switch context
— not shown). Whether the test of SEMAPHORE2 succeeds or fails, the LW instruction leaves it in the held
state for the next attempted post.

Initialization

At reset time, all of the semaphores are marked free, and all of the queues are marked as empty. This does not
require any RAM access, since the free-bit and queue-pointers are maintained in registers in the Test and Set
Engine, rather than in the RAM itself.

Lexra Proprietary & Confidential -98- Release 1.9

LEN% April 2, 2001 NetVortex

10. NetVortex Block Transfer Subsystem

This chapter describes the optional NetVortex block transfer subsystem, which consists of the Block Transfer
Controllers (BTC) and the Bock Transfer Engines (BTE). Section 10.1, Overview, briefly introduces the
NetVortex block transfer capabilities and structure. Section 10.2, Block Transfer Buffers and Transfer
Descriptors, defines the data structures that are used in conjunction with block transfers. Section 10.3,
Example Transaction Flow, provides a brief description of how block transfer transactions flow through the
NetVortex system. Section 10.4, Detailed Description of Block Transfer Modules, describes the elements of
the block transfer subsystem.
Summatry of block transfer subsystem:

» Operates at core processor speed.

* Peak transfer bandwidth of 256 bits per cycle.

» Transfer Engines dedicated to each processor.

* One or two receive/transmit port pairs for external connection.

* RAM interfaces can sustain simultaneous input/output transfers.

» Per-thread transfer descriptor queues maintained by each Transfer Engine.

» Centralized scheduler maintains optimal packet flow and packet order.

10.1.0Overview

The block transfer subsystem moves blocks of data between external receive and transmit ports and the local
data RAMs that are attached to one or more NetVortex processors. Threads set up transfer operations using
the Write Descriptor (WD) instruction that indicates the transfer details.

The block transfer subsystem is composed of the modules listed below. Refer to Figure 27, Organization of
the Block Transfer Controller.

» Block Transfer Engines (BTES) are attached to each processor’s dual-port data RAMs.

» Per-thread descriptor queues within each BTE provide storage for receive and transmit
requests that are made by processor.

* Receive DMA (RxDMA) and Transmit DMA (TxDMA) controllers within each BTE
support concurrent receive and transmit transfers for each processor.

* Block Transfer Controllers (BTCs) coordinate receive and transmit traffic for a receive/
transmit port pair.

» Utopia-4 receive and transmit ports are connected to the Rx BTC and Tx BTC modules.
Support for SPI Level 4 Phase 2 is planned for future releases.

* Internal busses (RxBus and TxBus) provide pathways between the BTEs and the BTCs.

The Block Transfer Engine (BTE) is controlled with the Write Descriptor instructions (WD and WD.CSW)

that pass a 64-bit descriptor from the CPU to the BTE. The BTE saves the descriptors in queues that may
hold multiple entries per thread. There is one Rx queue and one Tx queue per thread. Writing a descriptor to
the BTE does not in itself cause the transfer to start. Rather, each BTE uses information in the descriptor, in

Lexra Proprietary & Confidential -99- Release 1.9

LEN% April 2, 2001 NetVortex

conjunction with information provided by the Block Transfer Controllers (BTCs), to determine when the
transfer will take place.

The Rx BTC and Tx BTC modules pass data and control information between the Utopia-4 interfaces and

internal busses. They also coordinate transfers to optimize packet flow and maintain packet ordering. The Rx
BTC assigns receive traffic to threads with either strict round-robin selection, or to the next available thread.

Packet transmission follows the strict order of the original packet receive sequence.

The internal Rx and Tx busses provide pathways between the BTCs and BTEs. Each bus can transfer 64 bits
of data every cycle. When two port pairs are configured, each BTE is allocated to a specific port via the first
write descriptor sent to the BTE. For example, if the first descriptor sent to the BTE in processor 0 specified
port 1, processor 0's BTE would be allocated to port 1 for the remaining descriptors.

| Crossbar |

<> >
DMEM CPUO Emmm CPUn DMEM

Block Transfer Engine (BTE Block Transfer Engine (BTE
RX TX Descriptor Descriptor TX RX
DMA| |DMA Queues el Queues pMA| [DmA

r a

| |

| |

| |

| |
|9 Rx TBus 0 J>

AN AN
| Rx Tx |
| Tgr?gfzr Scheduling 0 Tgr?gfzr |
Controller Controller

C | |(RxBTCO) Tx TBus 0 | (MxBTCO)| | cC
s
(@] | - | 8
=} =t
= |)
3 3
> | -
(@] (@]
D | | D
» Rx TBus 1 w

| Tx Rx |

| TrBe:r?gfker Scheduling 1 TrBe:r?gfker |

Controller Controller

< | |(TxBTC1) < Tx TBus 1 (Rx BTC1)

! Block Transfer Subsystem |

L - — .

Figure 27: Organization of the Block Transfer Controller

10.2.Block Transfer Buffers and Transfer Descriptors

This section describes the format of the block transfer descriptors and block transfer buffers.

Table 40, Block Transfer Descriptor below shows the format of the descriptors software passes the the BTE
using the WD and WD.CSW instructions.

Lexra Proprietary & Confidential -100- Release 1.9

Rs:

Rt:

April 2, 2001

NetVortex

31 24 23

16 15

Wait-Event

Notify

Sequence

8

8

31 30 2929 26 25

14 13

16

Dir

000 | Port Offset Xfer-Count

1

3 1 12 14

Table 40: Block Transfer Descriptor

Field

Width
(Bits)

Description

Wait-Event

8

Wait-Event bits to be set in CXSTATUS when write-descriptor
includes a context switch. Rs[24]=1 causes the thread to wait for a
receive complete event. Rs[25]= causes the thread to wait for a trans-
mit complete event. This field is valud only with a WD.CSW instruc-
tion. For a WD instruction, this field must contain zeroes.

Notify

These bits are used to request the BTE to notify the thread of a trans-
fer completion by pulsing the appropriate WAIT-EVENT input to the
processor. Rs[16]=1 indicates that the thread wants to be notified
after the receive transfer specified by this descriptor is completed.
Rs[17]=1 indicates that the thread wants to be notified after the trans-
mit transfer specified by this descriptor is completed.

Sequence

16

Sequencing code used for packet ordering. The BTC inserts a 16-bit
sequence code in the reserved field of every received packet transfer
buffer. For some modes of operation, software must copy this code to
the transmit descriptor to allow the block transfer subsystem to main-
tain packet ordering. The interpretation of this code is private to the
BTE and BTC.

Dir

Direction of the transfer. 0 = receive; 1 = transmit

Port

ID number of the transmit or receive port to transfer data. All of the
threads on a given processor must access a single Rx/Tx port pair at
all times.

Offset

12

Offset of the buffer in local DMEM, addressed in 16-byte multiples.
The starting location of a buffer must be aligned to a 16-byte bound-
ary. The low order 4 bits of the byte offset are omitted from the Field.

Xfer-Count

14

This value indicates the maximum number of bytes which may be
received, or the number of bytes to transmit. It need not be a multiple
of 16 bytes. The count does not include the 8 bytes at the beginning
of the buffer that are reserved for use by the block transfer subsystem.

Block transfer buffers are regions in a processor’s local DMEM that provide storage for receive and transmit
packets. The BTE requires the base of each buffer to be aligned to a 16-byte boundary, and the first 8 bytes of
the buffer are reserved for use by the BTE. Aside from these restrictions, software has fiexibility with regards
to the number and size of buffers. Software may maintain an arbitrarily large pool of buffers, within the limits

of available local DMEM.

The figure below illustrates the structure of a transfer buffer.

Lexra Proprietary & Confidential

-101-

Release 1.9

LEN% April 2, 2001 NetVortex

Address

0 BTC reserved fields (see table below)

8 oct-1 oct-2 oct-3 oct-4 oct-5 oct-6 oct-7 oct-8
16 oct-9 oct-10 oct-11 oct-12 oct-13 oct-14 oct-15 oct-16

BTC Reserved Fields

64-48 47 46 45 44:0

Sequence Reserved | Abort Trunc | Reserved

Table 41: BTC Reserved Fields in Transfer Buffer

Field Use

Sequence Sequence Number inserted in receive packets by
BTE. Ignored for transmit packets.

Abort A received packet was aborted by the sender.

Trunc A received packet was truncated by BTE to fit
available buffer space.

Reserved Reserved for future BTE use. Contents undefined
for receive packets, ignored for transmit packets.

oct-n Octet <N> of the receive or transmitted packet.

To make a buffer available for a receive or transmit operation, software (i.e. a thread) creates a descriptor that
specifies the buffer location, size and other aspects of the transfer. The thread executes the WD*[.CSW]

instruction to enqueue the transfer descriptor in the thread’s receive or transmit descriptor queue within the

BTE. The descriptor is contained in the general registers specified by the WD* instruction.

10.3.Example Transaction Flow

Here is the flow of an example receive block transfer operation through a NetVortex system:

1. Enablethe Transfer. A processor initiates a receive block transfer with the WD.CSW instruc-
tion (Write Descriptor with Context Switch). Software sets the receive Wait-Event bit, Rs[24],
and and the receive Notify bit, Rs[16], to indicate that the thread is waiting for the receive
operation to complete and the thread wants to be notified of the completion. The processor per-
forms a context switch to allow the processor to perform work for another thread.

2. Enqueue the Descriptor. The processor passes the descriptor to its BTE. In turn, the BTE
enqueues the descriptor into the receive descriptor queue that serves the thread. The BTE also
informs the Rx BTC that a new buffer is available.

Lexra Proprietary & Confidential -102- Release 1.9

LEW% April 2, 2001 NetVortex

10.

11.

12.

Salect the Descriptor. The BTE analyzes the entries at the heads of its descriptor queues, and
selects a descriptor for this transfer. The BTE then passes the descriptor to its Receive DMA
(RxDMA) controller for the next transfer.

Schedule the Transfer. The Rx BTC observes that the BTE is ready to accept data. (This is
determined in the background of the current data transfer.)

Transfer the Data. When the BTE's turn arises, the Rx BTC directs data beats to the BTE, and
the BTE's RxDMA controller stores the data into the local DMEM.

Sgnal the Processor. After the last beat is transferred, the BTE signals the processor to clear
WAIT-EVENT bit O of the initiating thread’s CXSTATUS register.

Mark Thread Ready. The processor’s thread scheduler marks the applicable thread as ready for
execution, if no other events are pending. If another thread is currently executing, a future con-
text switch will activate the thread for which this transfer was completed. If no thread is cur-
rently active, the thread is resumed immediately.

Process Packet Data. The thread is chosen by the thread scheduler and resumes execution. The
thread processes the data in the packet and issues a transmit block transfer with the WD.CSW
instruction. Software inserts the sequence number from the reserved field of the packet buffer
into Rs[15:0]. Bits Rs[25] and Rs[17] are set to indicate that the thread is waiting for the trans-
mit operation to complete and the thread wants to be notified of the completion. The processor
performs a context switch to allow the processor to perform work for another thread.

Enqueue the Descriptor. The processor passes the descriptor to its BTE, which enqueues the
descriptor in the transmit descriptor queue that serves the thread that initiated the request.

Descriptor Next to Transmit. The BTE has a local copy of the currently transmitting sequence
number and determines that it has the descriptor for the next transmission. The BTE then
passes the descriptor to its Transmit DMA (TxDMA) controller.

Transfer the Data. When the BTE notices the completion of the current transfer it will begin to
transmit data from DMEM to the Tx BTC.

Sgnal the Processor. After the last beat is transferred, the BTE signals the processor to clear
WAIT-EVENT bit 1 of the initiating thread’s CXSTATUS register.

10.4.Detailed Description of Block Transfer Modules

This section provides more a detailed description of the block transfer components.

10.4.1. Block Transfer Engine

A Block Transfer Engine (BTE) is connected directly to each processor, with a dedicated control port to
receive descriptors from the processor, a dedicated data port connected to the processors’s data RAM and a
data port connected to the shared RxBus and TxBus interconnect. The processor connection provides a
private pathway from the processor to the engine for writing transfer descriptors with the WD instruction,
without using shared system bus bandwidth. Internally, the BTE includes per-thread descriptor queues to
manage receive and transmit operations, and dedicated receive and transmit DMA controllers (RxDMA and
TxDMA) to pass data between the processor's DMEM and the TBus.

Each thread is supported by dedicated receive and transmit descriptor queues. The BTE has parallel access to
the head entry of each queue to determine which descriptor to select for the next receive and transmit

Lexra Proprietary & Confidential -103- Release 1.9

LEM% April 2, 2001 NetVortex

operations.

The number of descriptor queue entries is RTL-configurable. The minimum is one entry per descriptor queue,

that is, one Rx descriptor and one Tx descriptor. In typical applications, two receive descriptor entries and one
transmit descriptor entry are dedicated per thread. Because the BTE allows software to assign the buffer
addresses in descriptors, the number of actual packet buffers held in DMEM may be larger than the number
of descriptor queue entries. With just three packet buffers, a thread may perform packet computation

concurrently with packet receive and transmit operations that take place in the background.

The BTE’s DMA controllers can sustain simultaneous receive and transmit operations. The processor’s
DMEM is a 128-hit wide dual port SRAM, shared by the processor and the BTE. The processor loads or
stores only 32 bits of data in any cycle over its port. The 64-bit receive and transmit DMA controllers access
the RAM in alternate cycles over their port, writing 128 bits in one cycle and reading 128 bits the next cycle.
This allows the RAM to sustain the simultaneous read and write operations that may be presented on 64-bit
RxBus and TxBus pathways. The DMA controllers include a register stage to match actual receive and
transmit data widths to the 128-bit RAM interfaces.

10.4.2. Rx and Tx Block Transfer Controllers

The Rx and Tx Block Transfer Controllers (Rx BTC and Tx BTC) provide data pathways between the
external Utopia-4 Rx/Tx and the internal RxBus and TxBus. The main functions of scheduling are to
distribute receive packets among the available pool of receive buffers, and to ensure packets are transmitted in
the original receive order. The scheduler enforces the ordering policy by providing sequencing information
that is used by the BTEs.

There are two modes of scheduling that may be employed.
e Strict Round-Robin Scheduling.
* Next Available Receive Buffer Scheduling.

Strict Round-Robin Scheduling

Strict round-robin scheduling of incoming packets assigns the first packet to the first processor, the second
packet to the second processor, etc. Assignment then wraps around to the first processor, the second
processor, etc. Transmit packets are selected in the same order. If the processor that is designated for a receive
(or transmit) operation does not have a receive (or transmit) buffer available when required, no data transfer
can take place.

Strict round robin scheduling is useful for its simplicity in distributing the packet workload among the
processors. It should only be used when a worst case analysis of the traffic flow indicates that receive and
transmit operations will not be stalled to wait for a buffer from the next required processor.

Next Available Receive Buffer Scheduling

Next Available receive buffer scheduling assigns an incoming packet, using windowed rotating priority, to a
processor that indicates a receive buffer is available. The Rx BTC inserts a sequence code in the reserved field
at the start of each received packet. When software is ready to transmit the packet, it inserts the sequence code
it obtained from the receive packet into the Sequence field of the transmit descriptor. Each BTE has a local
copy of the next sequence code to be transmitted and the Tx BTC informs the BTEs when to increment that
code. Each BTE ensures that a transmit descriptor that contains this sequence code is made ready in the
BTE's TXDMA controller when the controller is able to accept a new descriptor. The interpretation of the
sequence code is hardware implementation specific. Software only needs to copy the sequence code from
each receive operation to each transmit operation.

Lexra Proprietary & Confidential -104- Release 1.9

LEdasA

April 2, 2001

NetVortex

10.4.3. Utopia Level 4 Rx and Tx Interfaces

The Rx BTC and Tx BTC interfaces provide Utopia Level 4 connections to external data paths. A Net\Vortex
system may include one or two Rx/Tx interface pairs. The interfaces support the following features of Utopia

Level 4:

e 415 MHz operation.

* 32-bit wide data path.

* Channel 0 Provisioning.

* Concatenated (non-channelized) data streams.

* Packet and ATM cell transfer modes.

* Flow control signalling.

All of Rx/Tx interface signals are differential, so each port requires a total of 68 device pins. They are

summarized in the tables below.

Table 42: Receive Port Signals

signal direction description

RXU4_CLKI input receive reference clock
RXU4_CTLI input receive control flag
RXU4_DATAI[31:0] input receive data

Table 43: Transmit Port Signals

signal direction description

TXU4_CLKO output transmit reference clock
TXU4_CTLO output transmit control flag
TXU4_DATAOI[31:0] output transmit data

Lexra Proprietary & Confidential

-105-

Release 1.9

I mg April 2, 2001 NetVortex

Lexra Proprietary & Confidential -106 - Release 1.9

LEN% April 2, 2001 NetVortex

Appendix A. NetVortex Lconfig Forms

A.l. Introduction

The general construct of the multi-processor form is a block. The block can refer to a configuration for use
later in the form, or it can be used as a declaration inside another block. The structure of a block:

BLOCK_TYPE BLOCK_NAME},

The BLOCK_TYPE parameter is one of a handful of Lconfig keywords. It can describe a processor, a
crossbar device, or a system. Here is a list of valid block types and their descriptions:

Table 44: Lconfig Block Types

Block Types Description $Hection

PPU Packet Processing Unit Section A.2, Packet Processor Unit

NVX_4PROC NetVortex 4 processor tile with | Section A.3, Four Processor Tile with
a Level 1 crossbar Level 1 Crossbar

MEMORY_MAP Memory-Mapped crossbar Section A.4, Memory-Mapped Cross-
device bar Device

WRITE_DESC Write-Descriptor crossbar Section A.5, Write-Descriptor Cross-
device bar Device

TASER Test and Set Engine crossbar Section A.6, Test and Set Engine
device Crossbar Device

CROSSBAR NetVortex system including the | Section A.7, NetVortex System with
Level 2 crossbar Level 2 Crossbar

TheBLOCK_NAME is user defined, and may be used by Lconfig to help generate files for that configuration.
For instance, thBLOCK _NAME parameter in the PPU block is used as a prefix for the processor rtl files.

The block itself contains form options, verilog symbol declarations, and declarations of other blocks. The
multi-processor NetVortex form is intended to model the actual system hierarchy as closely as possible.

A.2. Packet Processor Unit

PPU PPU_CONFIG_NAME
FORM_OPTION VALUE

SYMBOL ‘define VERILOG_SYMBOL VALUE

\

The PPU block does not contain sub-block instances or declarations and it uses the same processor form
options as LX8000 configurations.

A.3. Four Processor Tile with Level 1 Crossbar

NVX_4PROCNVX_4PROC_CONFIG_NAME

{
PPU PPU_DECL_NAMEZ PPU_CONFIG_NAME

Lexra Proprietary & Confidential -107 - Release 1.9

LEN% April 2, 2001 NetVortex

h

The NVX_4PROC block contains the instances of the packet processors. If a PPU configuration is declared
above this block, it may be referenced inside. Four processors are required in the block.

A4, Memory-Mapped Crossbar Device

MEMORY_MABLOCK_NAME
FORM_OPTION VALUE

The MEMORY_MAP block describes a memory-mapped device. This block specifies a base address
and an address mask that declares the range of addresses defining a memory device. If the device specifies a
128 MB range, for instance, then the base address must be on a 128 MB boundary. Memory-maps must not
overlap with each other, including the write-descriptor memory-map. Here is a summary of address masks
and the memory window size created:

Table 45: Memory Mapped Device Address Masks

ADDR_MASK | SIZE
12'h000 4GB
12'h800 2GB
12'hC00 1GB
12'hEOO 512 MB
12'hF00 256 MB
12'hF80 128 MB
12'hFCO 64 MB
12'hFEO 32 MB
12'hFFO 16 MB
12'hFF8 8 MB
12'hFFC 4 MB
12'hFFE 2 MB
12'hFFF 1MB

A.5. Write-Descriptor Crossbar Device

WRITE_DESCBLOCK_NAME
FORM_OPTION VALUE

The WRITE_DESC block describes a write-descriptor device and will respond to write-descriptor

Lexra Proprietary & Confidential -108- Release 1.9

LEN% April 2, 2001 NetVortex

instructions. Each write-descriptor device responds to one or more DEVICE_ID bits. However, any given
DEVICE_ID bit must map to one and only one write-descriptor device.

A.6. Test and Set Engine Crossbar Device

TASER BLOCK_NAME
FORM_OPTION VALUE

The TASER block describes a Test and Set Engine device. This device is a special memory-mapped device in
that it allows access to semaphores. It has the same basic form options as a memory-mapped device, with one
additional option used to configure the number of semaphores in the Test and Set Engine. Only one TASER
device may be used in a NetVortex system.

A.7. NetVortex System with Level 2 Crossbar

CROSSBAR {
FORM_OPTION VALUE

NVX_4PROCNVX_4PROC_DECL_NAME1 NVX_4PROC_CONFIG_NAME

MEMORY_MAPIM_DECL_NAME
FORM_OPTION VALUE

\

WRITE_DESCWD_DECL_NAME
FORM_OPTION VALUE

\

TASER TASER_DECL_NAME
FORM_OPTION VALUE

\
3

The CROSSBAR block instances an entire Net\Vortex system. The processor tiles are declared, the device
ports are configured, and the related crossbar form options are set. This block does not need a
BLOCK_NAME since it may be instanced only once. The order in which crossbar devices are declared is the
order they will be inserted into the crossbar ports. The first device will be connected to port 0, the next device
to port 1, etc. There must be at least one crossbar device, up to a maximum of six. Only one TASER device
may be used in the system. Memory-mapped devices may not have overlapped ranges, and write-descriptor
devices may not share the same write-descriptor bits.

A.8. General Form Notes

When using a particular configuration more than once, for example, when declaring a 4 processor tile, if all 4
processors are identical, instance each processor with the same configuration:

Lexra Proprietary & Confidential -109- Release 1.9

LEW% April 2, 2001 NetVortex

NVX_4PROC PPU4TILE {
PPU pA = PACKETPU,;
PPU pB = PACKETPU,;
PPU pC = PACKETPU;
PPU pD = PACKETPU;

5

This guarantees that Lconfig will use one type of packet processor (PACKETPU in this case) for all
processors in the 4 processor tile. If the processors are explicitly declared inside the block, Lconfig will parse
each processor independently, even if they are exactly the same, and each configuration will be synthesized
separately. Therefore, when using a configuration more than once, describe the processor with a configuration
block, and instance it in the processor tile as shown above.

All crossbar devices must be uniquely addressable. To avoid accidently instancing a crossbar device
configuration twice inside the crossbar block, explicitly declare each crossbar device:

CROSSBAR {

MEMORY_MAP DEVICEO {
FORM_OPTION VALUE

A.9. Example NetVortex Form

Below is an example NetVortex form. This form defines a four processor system, a synchronous crossbar, and
three devices (a memory-mapped device, a write-descriptor device, and a Test and Set Engine). The four
processors are identical

PPU NVP {

PRODUCT = "LX8000";
PRODUCT_TYPE = "RTLY
TECHNOLOGY = "CUSTOM";
CUSTOM_FILES = "YES"
TESTBED_ENV = "CHIP"
RESET_TYPE = "ASYNCHRONOUS';
RESET DIST = "GLOBAL"
SLEEP = "NO“
RESET_BUFFERS = "LX2%
CLOCK_BUFFERS = "LX2"
RAM_CLOCK_BUFFERS = "NO"
CoP1 = "NONE";
COP2 = "EXPORT"
CoP3 = "NONE";
CEO = "CE_HL";
CE1 = "NONE";
MEM_LINE_ORDER = "SEQUENTIAL";
MEM_FIRST_WORD = "ZERO"
MEM_GRANULARITY = "BYTE";
SYSTEM_INTERFACE = "LBUS";
WDESC_ADDR = "12'hFF6";
LBC_WBUF = g

Lexra Proprietary & Confidential -110- Release 1.9

LEN% April 2, 2001 NetVortex

LBC_RBUF = "4
LBC_RDBYPASS = "YES"
LBC_SYNC_MODE = "SYNCHRONOUS"
LINE_SIZE = "4
ICACHE = "NONE";
DCACHE = "NONE"
IMEM = RANGE(0x4040_0000,0x4040_1fff);
DMEM = RANGE(0x4051_0000,0x4051_1fff);
DMEM_WIDTH = "128"
LMI_RANGE_SOURCE = "HARDWIRED";
LMI_RAM_ARB = "NO%
JTAG = "EXPORT_EXTENDED"
EJTAG = "YES"
EJTAG_INST_BREAK = "2
EJTAG_DATA_BREAK = "2
PC_TRACE = "NO%
EJTAG_DCLK_N = "3
EJTAG_TPC_M = "8"
EJTAG_XV_BITS = "4
EJTAG_PC_ISABIT = "NO%
SCAN_INSERT = "NO"%
SCAN_MIX_CLOCKS = "NO%
SCAN_NUM_CHAINS = "4
SCAN_SCL = "NO%
RAM_BIST_MUX = "NO%
LEXOP2_OPCODE = "LX20P"
LEXOP2_DISABLE = "NO%
THREAD_SCHEDULER = "INTERNAL";
CONTEXTS = "8
JTAG_TRST_IS_TPC = "NO%

h

NVX_4PROC PPU4 {
PPU pA = NVP;
PPU pB = NVP;
PPU pC = NVP;
PPU pD = NVP;

3

CROSSBAR {
CROSSBAR_SYNC_MODE = "SYNCHRONOUS";
NVX_4PROC XBO0 = PPU4;
/[uncomment this line to make it 8 processors
/I NVX_4PROC XB1 = PPU4;

MEMORY_MAP MEMORY {// This device is on port 0

READ_DEVICE = "YES";
ADDR_BASE = "12’h000";
ADDR_MASK = "12’h800";
REQ_QSIZE = "g";
READ_QSIZE = "g";

Lexra Proprietary & Confidential -111- Release 1.9

LEN% April 2, 2001 NetVortex

WRITE_DESC CAM {// This device is on port 1
READ_DEVICE = "YES";
DEVICE_ID = "32’hFFFFFFFF";
REQ_QSIZE g
READ_QSIZE ngr:

g

TASER TESTANDSET {// This device is on port 2
READ_DEVICE = "YES"
ADDR_BASE "12’hFF8";
ADDR_MASK "12’hFFF",
REQ_QSIZE "8";
READ_QSIZE "8";
SEMAPHORES = "32"

3

This form describes a 4 processor system, synchronous crossbar interface, with a 2GB memory mapped
device, a write-descriptor device, and a Test and Set Engine device. The device port for the memory-mapped
device has an 8 entry queue for the device request path, and an 8 entry queue for the read return path. Any
DEVICE_ID will select the write-descriptor device on port 1 of the crossbar. This port also has an 8 entry
gueue for the device request path and an 8 entry queue for the read return path. The Test and Set Engine
device is on crosshar port 2, and has a 1 MB memory-mapped window starting at FF80_0000h. It is
configured for 32 addressable semaphores, and the crossbar has 8 entries for the request and read return paths
for the Test and Set Engine’s port.

By declaring the "PPU4" construct, it is easy to reuse the tile description for 8, 12, or 16 processor
configurations.

A.10. Configuration Options for the LX8000 Packet Processor

This section provides a summary of the configuration options availabld euithg. Refer tolconfig forms
for a detailed description of these form options.

PRODUCT -- Lexra Processor name

PRODUCT_TYPE -- indicates product type

TECHNOLOGY -- identifies target technology

TESTBED_ENV -- identifies simulation testbed environment type
RESET_TYPE -- flip-flop reset method

RESET_DIST -- reset distribution method

SLEEP -- include clock SLEEP support
RESET_BUFFERS -- reset buffers at top-level module
CLOCK_BUFFERS -- clock buffers at top-level module
RAM_CLOCK_BUFFERS -- LMI RAM clock distribution method

COP1 -- coprocessor interface 1

COP2 -- coprocessor interface 2

COP3 -- coprocessor interface 3

CEO -- custom engine 0

CE1 -- custom engine 1

M16_SUPPORT -- 16-bit opcode support

MEM_LINE _ORDER -- cache line fill beat ordering
MEM_FIRST_WORD -- cache line fill first word
MEM_GRANULARITY -- main memory system partial word write support

Lexra Proprietary & Confidential -112- Release 1.9

LEN% April 2, 2001 NetVortex

SYSTEM_INTERFACE -- system bus interface type

WDESC_ADDR -- Write Descriptor upper address bits
LBC_WBUF -- Lexra Bus Controller write buffer depth
LBC_RBUF -- Lexra Bus Controller read buffer depth
LBC_RDBYPASS -- Lexra Bus Controller read bypass enable
LBC_SYNC_MODE -- LBC synchronous/asynchronous selection
LINE_SIZE -- cache line size, in words

ICACHE -- instruction cache size

DCACHE -- data cache size

IMEM -- local instruction RAM with line valid bits
IROM -- local instruction ROM

DMEM_WIDTH -- local scratch pad data memory width
DMEM -- local scratch pad data RAM

LMI_DATA_GRANULARITY -- DCACHE and DMEM write granularity
LMI_RANGE_SOURCE -- source of LMI address ranges

LMI_RAM_ARB -- allow external agents to arbitrate for LMI RAMs
JTAG -- Internal JTAG Tap controller with EJTAG support
EJTAG -- EJTAG Debug Support

EJTAG_INST_BREAK -- Number of instruction breaks to be compiled
EJTAG_DATA_BREAK -- Number of data breaks to be compiled
JTAG_TRST_IS_TPC -- TRST pinis TPC out, instead of TDO/TPC mux

PC_TRACE -- BEJTAG PC trace pins

EJTAG_DCLK_N -- EJTAG PCTrace DCLK N parameter

EJTAG_TPC_M -- EJTAG PCTrace TPC M parameter

EJTAG_XV_BITS -- EJTAG PCTrace number of Exception Vector bits

EJTAG_PC_ISABIT -- EJTAG PCTrace include ISA as PC Bit0

SCAN_INSERT -- Controls scan insertion and synthesis

SCAN_MIX_CLOCKS -- scan chains can cross clock boundaries with
lock-up latches

SCAN_NUM_CHAINS -- number of scan chains

SCAN_SCL -- scan collar insertion on RAM interfaces

SEN_DIST -- scan enable distribution method

SEN_BUFFERS -- scan enable buffering

RAM_BIST_MUX -- include test RAM mux and ports

THREAD_SCHEDULER -- location of thread scheduler

CONTEXTS -- Number of contexts (threads) in the processor

A.11. Configuration Options for Memory-Mapped Devices

READ_DEVICE -- Does the device return read data

ADDR_BASE -- Base Address for Memory mapped range (31:20)

ADDR_MASK -- Address Mask used to specify the size of the map
(31:20)

REQ_QSIZE -- XBar Queue size for device request path

READ_QSIZE -- XBar Queue size for device read path

A.12. Configuration Options for the Test & Set Engine

READ_DEVICE -- Does the device return read data

ADDR_BASE -- Base Address for Memory mapped range (31:20)

ADDR_MASK -- Address Mask used to specify the size of the map
(31:20)

REQ_QSIZE -- XBar Queue size for device request path

READ_QSIZE -- XBar Queue size for device read path

SEMAPHORES -- No. of semaphores for the test and set engine

Lexra Proprietary & Confidential -113- Release 1.9

I—Bﬂ% April 2, 2001 NetVortex

A.13. Configuration Options for Write-Descriptor Devices

READ_DEVICE -- Does the device return read data
DEVICE_ID -- 32-bit Write Descriptor Device 1D
REQ_QSIZE -- XBar Queue size for device request path
READ_QSIZE -- XBar Queue size for device read path

A.14. Configuration Options for the Crossbar

CROSSBAR_SYNC_MODE-- Sync/Async Crossbar Interconnect

Lexra Proprietary & Confidential -114- Release 1.9

LEN% April 2, 2001 NetVortex

Appendix B. NetVortex Port Descriptions

The table below shows the port connections for the NetVortex top level module, known as nvx3. Ports that are
replicated for multiple processors include <n> in the name, where <n>=0, 1, up to 15. Likewise, device ports
include <m> in the port name, where <m>=0, 1, up to 5.

All ports must be connected to valid logic-level sources.

The timing information indicates the point within a cycle when the signal is stable, in terms of percent. The
timing information also includes parenthetical references to these notes:

1. Clocked in the JTAG_CLOCK domain.

2. Clocked in the BUSCLK domain if crossbar or LBC are asynchronous. Otherwise, clocked in
the SYSCLK domain.

3. Does not require a constraint (e.g., a clock).
4. A false path (e.g. a configuration input tied to a constant).
5. Timing is specified with a symbol in techvars.scr script (e.g. RAM timing).

Table 46: NetVortex Top Level Port Summary

Port Name I/O Timing Description

Clocking, Reset, Interrupts, and Control

SYSCLK input) Processor clock.
BUSCLK input 3 Asynchronous crossbar clock.
ResetN input (4) Warm reset, e.g. from a button or

higher level controller.

CResetN input (4) Cold reset, from power on condition.

p<n>_ RESET_D1 R N_O output | 30% SYSCLK domain reset combination of
ResetN, CResetN, EJTAG.

XB_RESET D1 R_N input (4) SYSCLK domain reset input for cross-
bar, connect to
pO_RESET_D1_R_N_O output.

XB_RESET_D1 BR_N input (4) BUSCLK domain reset input for cross-
bar, connect to

p0_RESET_D1 _R_N_O output syn-
chronized into BUSCLK domain.

p<n>_INTREQ_N[15:2] input 4) Interrupt requests, active low.

EXT_HALT_P input 50% Drive to one stalls processor next
cycle.

Configuration

CFG_MEMSEQUENTIAL input (4) Strap to one if line reads return words

in sequential order, zero if interleave
order. Tie to 1.

Lexra Proprietary & Confidential -115- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

CFG_MEMZEROFIRST input (4) Strap to one if line reads return word
zero first, zero if desired word first.
Tie to 1.

CFG_LBCWBDISABLE input (4) Strap to one to disable read bypass of

LBC write buffer, zero to allow read
bypass. Tie to 1.

CFG_EJTNMINUS1[1:0] input | (4) Strap with EJTAG DCLK N minus 1
configuration (0-3=1-4).

CFG_EJTMLOGZ2[1:0] input 4) Strap with EJTAG M log2 (0-3=1,2,4,8)
configuration.

CFG_EJT3BITXVTPC input 4) Strap with ETJAG 3-bit TPC configura-
tion.

CFG_EJTBITOM16 input 4) Strap with EJTAG PC bhit 0 in TPC con-
figuration.

CFG_EJDIS input (4) Must be strapped to zero.

CFG_DWDISW input ()] Strap to one to disable processor
DMEM writes. Must be zero for NetVor-
tex.

Test and Debug

JTAG_TDO_NR output | 50%, (1) Test data out.

JTAG_TDI input 50%, (1) Test data in.

JTAG_TMS input 60%, (1) Test mode select.

JTAG_CLOCK input 3) Test mode select.

JTAG_TRST_N input 4 Tap controller reset.
p<n>_EJC_ECRPROBEEN_R output | 30% One indicates EJTAG probe is active.
p<n>_RBC_SEL[7:0] input 4 RAM BIST RAM select code:

10000000 - instruction MEM
01000000 - not used

00100000 - dcache data store
00010000 - dcache tag store
00001000 - icache tag store, set 1
00000100 - icache inst store, set 1
00000010 - icache tag store, set 0
00000001 - icache inst store, set 0
Note for NetVortex, the DMEM is not
accessible via the RAM BIST path.

p<n>_RBC_WE[<k>:0] input 4 RAM BIST write enable, where <k>is 1
for word write granularity, 7 for byte
write granularity.

p<n>_RBC_RE input (4) RAM BIST read enable.
p<n>_RBC_CS input 4 RAM BIST select.
p<n>_RBC_ADDRJ[15:0] input 4 RAM BIST address.
p<n>_RBC_DATAWR[63:0] input (4) RAM BIST write data.

Lexra Proprietary & Confidential -116- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

p<n>_RBM_DATARDI[63:0] output | (4) RAM BIST read data.

Data RAM DMA Access

p<n>_DMADW_RCLK input 3 Data RAM DMA clock (optional)

p<n> DMADW_DATAINDEX[17:4] | input | (5) Data RAM DMA address.

p<n>_DMADW_DATARD[127:0] output | (5) Data RAM DMA read data.

p<n>_DMADW_DATAWR[127:0] input | (5) Data RAM DMA write data.

p<n>_DMADW_DATACS input (5) Data RAM DMA chip select.

p<n>_DMADW_DATACSN input (5) Data RAM DMA chip select, active low.

p<n>_DMADW_DATARE input (5) Data RAM DMA read enable.

p<n>_DMADW_DATAREN input (5) Data RAM DMA read enable, active
low.

p<n>_DMADW_DATAWE[<k>:0] input (5) Data RAM DMA write enable, where

<k> is 3 for word write granularity, 15
for byte write granularity.

p<n>_DMADW_DATAWEN[<k>:0] input 5) Data RAM DMA write enable, active
low, where <k> is 3 for word write gran-
ularity, 15 for byte write granularity.

Coprocessor Interface

p<n>_C2condin input 80% Cop branch flag.

p<n>_C2rd_addr[4:0] output | 50% Cop read address.

p<n>_C2rhold output | 45% Cop hold condition, one stalls copro-
cessofr.

p<n>_C2rd_gen output | 50% Cop general register read command.

p<n>_C2rd_con output | 50% Cop control register read command.

p<n>_C2rd_data[31:0] input 80% Cop read data.

p<n>_C2wr_addr[4:0] output | 20% Cop write address.

p<n>_C2wr_gen output | 20% Cop general register write command.

p<n>_C2wr_con output | 20% Cop control write address command.

p<n>_C2wr_data[31:0] output | 30% Cop write data.

p<n>_C2invid_M output | 60% Cop invalid instruction flag, one indi-
cates invalid instruction in M stage.

p<n>_C2xcpn_M output | 60% Cop exception flag, one indicates
exception in M stage.

p<n>_C2rd_cnitx[2:0] output | 40% Cop read context number.

p<n>_C2wr_cntx[2:0] output | 30% Cop write context number.

Event Control and Thread Observation

Lexra Proprietary & Confidential -117- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/10 Timing Description
p<n>_EXT_CLEARWTEVNT_R input 30% External hardware clear wait event
[<n>*8-1:0] flags. <n> is the number of contents.
p<n>_CX_STUSTHWAIT_R output | 30% Bits set to one indicate which contexts
[<n>-1:0] are waiting for events, where <n> is the

number of contexts.

p<n>_CX_THREADACTV_R output | 30% A bit set one indicates which context (if
[<n>-1:0] any) is active, where <n> is the number
of contexts.

p<n>_EXT_NXTCNTX_P_R[2:0] input 30% External Scheduler Next Context.

p<n>_EXT_NEXTCNTXRDY_P_R input 30% External Scheduler Next Context is
ready.

p<n>_CX_STUSTHPRIO_R[<n>*3- | output | 30% Thread priority status.

1:.0]

Error Signalling

XB_ErrBadAddr<n> output | (2), 20% A bit pulsed high identifies a processor
that passed a bad address to crossbar,
where <n> is the processor.

XB_ErrinvidRd<n> output | (2), 20% A bit pulsed high identifies a processor
that passed a bad read request to
crossbar, where <n> is the processor.

XB_ErrThread<n>[3:0] output | (2), 20% Identifies error causing thread that sig-
nals an error via XB_ErrBadAddr or
XB_ErrinvidRd. <n> is the processor.

Crossbar Device Interface

DevReqRdy<m> output | (2), 20% Asserted when a new request is
present.

RegAddr<m>[31:0] output | (2), 20% Request address.

ReqCmd<m>[3:0] output | (2), 20% Request command.

ReqSize<m>[2:0] output | (2), 20% Request size.

ReqGTid<m>[15:0] output | (2), 20% Request global thread ID.

RegData<m>[31:0] output | (2), 20% Write data (for memory mapped
devices).

ReqDevID<m>[4:0] output | (2), 20% Write descriptor device ID (for write

descriptor devices).

RegData<m>[63:0] output | (2), 20% Write descriptor write data (for write
descriptor devices).

DevBusy<m> input (2), 30% Device will not accept current request
when asserted.

RdDequeue<m> output | (2), 40% Asserted by crossbar when it accepts
read data.
RdDataRdy<m> input (2), 30% Device's split read data is ready.

Lexra Proprietary & Confidential -118- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

SplitRdData<m>[63:0] input (2), 30% Split read data.

RdGTid<m>[15:0] input (2), 30% Global thread ID associated with split
read data.

RdACmd<m>[1:0] input (2), 30% Read data command.

RdSize<m>[1:0] input (2), 30% Read data size.

Device Management Interface

DMI_ProcNum([7:0] input (2), 20% Processor number assigned to DMI.
DMI_DevReqgs[m-1:0] input (2), 20% DMI request lines, to devices. <m> is
the number of devices.
DMI_Gnt output | (2), 20% DMI grant lines, from devices.
DMI_Cmd[3:0] input (2), 20% DMI command, to device.
DMI_Size[2:0] input (2), 20% DMI data size, to device.
DMI_Addr[31:0] input (2), 20% DMI address, to device.
DMI_Data[63:0] input (2), 20% DMI write data, to device.
DMI_ThreadID[3:0] input (2), 20% DMI thread ID, to device.
DMI_DevID[4:0] input (2), 20% DMI device address, to device.
DMI_RdValid output | (2), 20% DMI split read data valid, from device.
DMI_RdBusy input (2), 30% DMI read path busy, to device.
DMI_RdData[63:0] output | (2), 20% DMI split read data, from device.
DMI_RdThreadID[3:0] output | (2), 20% DMI split read thread ID, from device.
DMI_RdSize[1:0] output | (2), 20% DMI split read data size, from device.
DMI_RdCmd[1:0] output | (2), 20% DMI split read data command, from
device.

The table below shows the port connections for the top level module of the LX8000 processor, known as Ix2.
The timing information and notes have the same meaning as for the previous table.

Table 47: LX8000 Single-Processor Port Summary

Port Name I/0 Timing Description

Clocking, Reset, Interrupts and Control

SYSCLK input 3) Processor clock.

ResetN input 4) Warm reset (or reset "button").
CResetN input 4) Cold reset (or power on).
RESET_D1_R N input 4) SYSCLK domain reset combination of

ResetN, CResetN, EJTAG.

Lexra Proprietary & Confidential -119- Release 1.9

LEW% April 2, 2001 NetVortex

Port Name I/O Timing Description

RESET_D1_BR_N input 4) BUSCLK domain reset combination of
ResetN, CResetN, EJTAG.

RESET_PWRON_C1_N input 4) Power on reset copy for JTAG.

RESET_PWRON_D1 LR_N input 4) SYSCLK domain power on reset for
EJTAG.

RESET_D1 R N_O output 30% SYSCLK domain reset combination of
ResetN, CResetN, EJTAG.

RESET_D1 BR_N_O output 30% BUSCLK domain reset combination of

2) ResetN, CResetN, EJTAG.

RESET_PWRON_C1_N_O output 30% Power on reset copy for JTAG.

RESET_PWRON_D1 LR_N_O output 30% SYSCLK domain power on reset for
EJTAG.

INTREQ_N[15:2] input 4) Interrupt requests.

EXT_HALT_P input 50% External stall line.

Configuration

CFG_TLB_DISABLE input 4) Disable TLB mappings even if pop_tlb.

CFG_SLEEPENABLE input 4) Sleep enable configuration.

CFG_RAD_LEXOP[5:0] input 4) LEXOP encoding. Must be 011111 for
LX8000.

CFG_RAD_DISABLE input 4) LEXOP disable configuration. Must be
zero for LX8000.

CFG_SINGLEISSUE input 4) Single issue mode configuration. Must
be zero for LX8000.

CFG_HLENABLE input 4) Strap to one to enable internal HI/LO
registers.

CFG_MACENABLE input 4) Strap to one to enable internal MAC (if
present).

CFG_MEMSEQUENTIAL input 4) Strap to one if line reads return words
in sequential order, zero if interleave
order.

CFG_MEMZEROFIRST input 4) Strap to one if line reads return word

zero first, zero if desired word first.

CFG_MEMFULLWORD input 4) Strap to one if main memory must be
written with 32-bit words, zero if byte
and halfword writes are allowed.

CFG_LBCWBDISABLE input 4) Strap to one to disable read bypass of
LBC write buffer, zero to allow read
bypass.

CFG_PROCNUM[7:0] input 4) Strapped with processor number.

CFG_EJTNMINUS1[1:0] input (4) Strap with EJTAG DCLK N minus 1

configuration (0-3=1-4).

Lexra Proprietary & Confidential -120- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

CFG_EJTMLOG2[1:0] input 4 Strap with EJTAG M log2 (0-3=1,2,4,8)
configuration.

CFG_EJT3BITXVTPC input 4) Strap with ETJAG 3-bit TPC configura-
tion.

CFG_EJTBITOM16 input 4) Strap with EJTAG PC bit0 in TPC con-
figuration.

CFG_DWBASE[31:10] input 4) Strapped with DMEM base address

configuration value.

CFG_DWTOP[23:10] input 4) Strapped with DMEM top address con-
figuration value.

CFG_IWBASE[31:10] input 4) Strapped with IMEM base address con-
figuration value.

CFG_IWTOP[23:10] input 4) Strapped with IMEM top address con-
figuration value.

CFG_IWROM input 4) Strap to one to treat IMEM like a ROM.
(Note, new applications should use
IROM instead of ROM-like IMEM.)

CFG_IROFF input 4) Strap to one to disable IROM.

CFG_DWDISW input 4) Strap to one to disable processor
DMEM writes. Must be zero for
LX8000.

CFG_EJDIS input 4) Must be strapped to zero.

Test and Debug

JTAG_RESET_O output 20%, (1) JTAG is in TEST-LOGIC-RESET state.

JTAG_RESET input 4) JTAG is in TEST-LOGIC-RESET state.

TAP_RESET_N_O output 20%, (1) TAP controller reset.

TAP_RESET_N input 4) TAP controller reset.

JTAG_TDO_NR output 50%, (1) Test data out.

JTAG_TDI input 60%, (1) Test data in.

JTAG_TMS input 60%, (1) Test mode select.

JTAG_CLOCK input ?3) Test clock.

JTAG_TRST_N input 4) Test reset.

EJC_ECRPROBEEN_R output 30% One indicates EJTAG probe is active.

JTAG_CAPTURE output 20%,(1) JTAG is in DATA REGISTER CAP-
TURE state

JTAG_SCANIN output 50%,(1) Scan input to chain

JTAG_SCANOUT input 50%,(1) Scan output from chain

JTAG_IR[4:0] output | 20%,(1) | Contents of INSTRUCTION REGIS-
TER

Lexra Proprietary & Confidential -121- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

JTAG_SHIFT_IR output 20%,(1) JTAG is in SHIFT INSTRUCTION REG-
ISTER state

JTAG_SHIFT_DR output 20%,(1) JTAG is in SHIFT DATA REGISTER
state

JTAG_RUNTEST output 20%,(1) JTAG is in RUN-TEST state

JTAG_UPDATE output 20%,(1) JTAG is in DATA REGISTER UPDATE
state

SEN input 4) Scan Enable

TMODE input 4) Test Mode Pins

SIN[<k>:0] input 4) Scan Input. <k> can range from 7 to O.

SOUT[<k>:0] output 4) Scan Output. <k> can range from 7 to
0.

RBC_SEL|[7:0] input 4) RAM BIST RAM select code:

10000000 - instruction MEM
01000000 - data MEM

00100000 - dcache data store
00010000 - dcache tag store
00001000 - icache tag store, set 1
00000100 - icache inst store, set 1
00000010 - icache tag store, set 0
00000001 - icache inst store, set 0

RBC_WE[<k>:0] input 4) RAM BIST write enable, where <k>is 1
for word write granularity, 7 for byte
write granularity.

RBC_RE input 4) RAM BIST read enable.
RBC_CS input 4) RAM BIST select.
RBC_ADDRJ[15:0] input 4) RAM BIST address.
RBC_DATAWR[63:0] input 4) RAM BIST write data.
RBM_DATARD[63:0] output 4) RAM BIST read data.

Data RAM DMA Access

DMADW_RCLK input ?3) Data RAM DMA clock.
DMADW_DATAINDEX[17:4] (MAX) | input (5) Data RAM DMA address.
DMADW_DATARD[63:0] output (5) Data RAM DMA read data (128-bit
interface is optional).
DMADW_DATAWR[63:0] input 5) Data RAM DMA write data (128-hit
interface is optional).
DMADW_DATACS input (5) Data RAM DMA chip select.
DMADW_DATACSN input (5) Data RAM DMA chip select, active low.
DMADW_DATARE input (5) Data RAM DMA read enable.
DMADW_DATAREN input (5) Data RAM DMA read enable, active
low.

Lexra Proprietary & Confidential -122- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/O Timing Description

DMADW_DATAWE[<k>:0] input (5) Data RAM DMA write enable, where
<k> is 3 for word write granularity, 15
for byte write granularity.

DMADW_DATAWEN[<k>:0] input 5) Data RAM DMA write enable, active
low, where <k> is 3 for word write gran-
ularity, 15 for byte write granularity.

LBC Interface (to LBus or Crossbar)

LAddrO[31:0] output (2), 20% | Address.

LCmdO[8:0] output (2), 20% Output command.

LDataO[63:0] output (2), 20% Output data.

LDatal[63:0] input (2), 50% Input data.

LirdyO output (2), 20% Initiator ready.

Lirdyl input (2), 30% Other initiators ready.

LFrameO output (2), 20% Transaction frame.

LFramel input (2), 30% Frame from other initiators.

LSell input (2), 30% Slave select.

LTrdyl input (2), 30% Target ready.

LGTidO[15:0] output (2), 20% LBC global thread ID.

LGTidI[15:0] input (2), 30% LBus global thread ID.

XBRdVId input (2), 30% Crossbar read data valid.

XBRdSize input (2), 30% Split read data size.

SpltRdFull output (2), 30% Read data queue full.

Lid output (2), 20% Instruction/data.

LUc output (2), 20% Bus request.

LCoe[9:0] output (2), 20% Command output enable.

LToe output (2), 20% | Transaction output enable.

LDoe[7:0] output (2), 20% Data output enable.

LReq output (2), 50% Bus request.

LGnt input (2), 30% Bus grant.

Shared RAM Request/Grant Interface

EXT_IWREQRAM_R input 30% External hardware drives to one to
request access to IMEM.

IW_GNTRAM_R output 30% Cpu drives to one to grant external
IMEM access request.

EXT_DWREQRAM_R input 30% External hardware drives to one to
request access to DMEM.

Lexra Proprietary & Confidential -123- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

DW_GNTRAM_R output 30% Cpu drives to one to grant external
DMEM access request.

EXT_ICREQRAM_R input 30% External hardware drives to one to
request access to ICACHE.

IC_GNTRAM_R output 30% Cpu drives to one to grant external
ICACHE access request.

EXT_DCREQRAM_R input 30% External hardware drive to one to
request access to DCACHE.

DC_GNTRAM_R output 30% Cpu drives to one to grant external
DCACHE access request.

Coprocessor Interface

C<z>condin input 80% Cop branch flag.

C<z>rd_addr[4:0] output 50% Cop read address.

C<z>rhold output 45% Cop hold condition, one stalls copro-
Cessor.

C<z>rd_gen output 50% Cop general register read command.

C<z>rd_con output 50% Cop control register read command.

C<z>rd_data[31:0] input 80% Cop read data.

C<z>wr_addr[4:0] output 20% Cop write address.

C<z>wr_gen output 20% Cop general register write command.

C<z>wr_con output 20% Cop control write address command.

C<z>wr_data[31:0] output 30% Cop write data.

C<z>invid_M output 60% Cop invalid instruction flag, one indi-

cates invalid instruction in M stage.

C<z>xcpn_M output 60% Cop exception flag, one indicates
exception in M stage.

C<z>rd_cntx[2:0] output 40% Cop read context number.
C<z>wr_cntx[2:0] output 30% Cop write context number.
C3cnt_iparet output 20% Count instructions retired Pipe A
C3cnt_ipbret output 20% Count instructions retired Pipe B
C3cnt_ifetch output 20% Count instruction fetches
C3cnt_imiss output 20% Count icache misses
C3cnt_istall output 20% Count icache stalls
C3cnt_dmiss output 20% Count dcache misses
C3cnt_dstall output 20% Count dcache stalls
C3cnt_dload output 20% Count data load operations
C3cnt_dstore output 20% Count data store operations

Lexra Proprietary & Confidential -124- Release 1.9

LEN% April 2, 2001 NetVortex

Port Name I/0 Timing Description

Event Control and Thread Observation

EXT_CLEARWTEVNT_R[<n>*8- input 30% Clear status wait event bits, where <n>
1:0] is the number of contexts.
CX_STUSTHWAIT_R[<n>-1:0] output 30% Bits set to one indicate which contexts

are waiting for events, where <n> is the
number of contexts.

CX_THREADACTV_R[<n>-1:0] output 30% A bit set one indicates which context (if
any) is active, where <n> is the number
of contexts.

EXT_NXTCNTX_P_R[2:0] input 30% External Scheduler Next Context.

EXT_NEXTCNTXRDY_P_R input 30% External Scheduler Next Context is
ready.

CX_STUSTHPRIO_R[<n>*3-1:0] output 30% Thread priority status.

Block Transfer Engine

RXT<z>_CTL_R input 30% Receive TBus Control (1=control beat,
O=data beat).

RXT<z>_DATA R[63:0] input 30% Receive TBus Data.

RXT<z> RDY_R output 30% Asserted when new receive descriptor
is available.

TXT<z>_RDY_R input 30% Asserted when transmit scheduler is

ready to accept transmit data.

TXT<z>_INCSEQ_R input 30% Asserted when transmit scheduler
wants BTES to increment their
sequence number.

TXT<z>_DONE_R input 30% Asserted when TBus will be idle in the
next cycle.

TXT<z>_BUSY_R output 30% Asserted when the BTE is transmitting
data. Deasserted 2 cycles before fin-
ishing.

TXT<z>_CTL_R output 30% Transmit TBus Control (1=control beat,

O=data beat).

TXT<z>_DATA_R[63:0] output 30% Transmit TBus Data.

Lexra Proprietary & Confidential -125- Release 1.9

I mg April 2, 2001 NetVortex

Lexra Proprietary & Confidential -126- Release 1.9

LEdasA

April 2, 2001

NetVortex

Appendix C. LX8000 Pipeline Stalls

This section documents stall conditions that may arise in the LX8000.

C.1. Stall Definitions
Issue stall: an invalid instruction enters the pipe, while any other valid instructions in the pipe advance.
Pipeline stall: All instructions in either pipe stay in the same stage, and do not advance.
Stall: if not otherwise qualified, means pipeline stall.
C.2. Instruction Groupings
These instruction groupings are used to describe stall conditions that are based on the type of instructions in
the pipeline.
Table 48: Instruction Groupings For Stall Definition
Group Name Instructions in Group
M-I-LoadStore: LB, LH, LW, LBU, LHU, LWC1, LWC2, LWC3
SB, SH, SW, SWC1, SWC2, SWC3
M-I-Control J, JAL(X), JR, JALR
BLTZAL, BGEZAL, (linked branches)
SYSCALL, BREAK
All COPz (MFCz, CFCz, MTCz, CTCz, BCFz, BCTz, RFE)
LWCz, SWCz (also in LoadStore group)
M-1-UnlinkedBranch BEQ, BNE, BLEZ, BGTZ, BLTZ, BGEZ
M-I-General All remaining M-I instructions.
MIV-CMove MOVZ ,MOVN
EJTAG-Control DERET, SDBBP, M16SDBBP
C.3. Non-Sequential Program Flow Issue Stall

M-l JR, JALR:
Two issue stalls after the delay slot instruction.

M-I J, JAL, and M-I taken branches:
NO stall cycles after the delay slot instruction.

M-I not-taken branches
Two issue stalls after the delay slot instruction.

The branch rules are a consequence of the fact that all branches are predicted to be taken.

Lexra Proprietary & Confidential -127 -

Release 1.9

LEW% April 2, 2001 NetVortex

C.4. Load Subword Stall

Load instructions which have Byte or Halfword operands always cause a one-cycle stall.
C.5. Store-Load Stall

A Load instruction which follows a Store instruction by one cycle causes a one-cycle stall if the Store
instruction hits in the Dcache or has a Byte or Halfword operand.

C.6. StoreAny - StoreSubword Stall

If the LX8000 is configured to work with RAMs that have word write granularity, a Store instruction which
has a Byte or Halfword operand, and which follows any Store instruction by one CYCLE, always causes a
one-cycle stall. Alternatively, the LX8000 can be configured to work with RAMs support byte write
granularity, which eliminates the stall.

C.7. Load/Store Ops Stall Matrix

The following table summarizes the stall rules related to Load and Store instructions described above. In this
table, the "2nd OP" refers to an instruction which issues in the CYCLE after the "1st OP".

Table 49: Load/Store Ops Stall Matrix

1st OP
2nd OP M-I, LW, LT M-I, LB(U), LH(U) SB, SH sw
non load-store - 1uU - -
LW, LB(U), LH(U)) - U 1w 1U
SB, SH - 1U 1w 1uU
SW - 1U - -

Notes: - means no stalls
xU indicates unconditional stall for the indicated number of cycles
xS indicates stall only if 2ndOp Source = 1stOp Load-target
XW indicates stall if data RAMs have word-write granularity

C.8. MVCz Stall

The coprocessor move instructions (M-l: LWCz, MTCz, MFCz, and MTLXCO, MFLXCQ) are always
followed by a single cycle issue stall.

C.9. IMMU Stall

When the program jumps, branches, or increments between the two most recently used pages, a single cycle
stall is incurred.

When the program jumps, branches or increments to a third page a two-cycle stall is incurred.

Lexra Proprietary & Confidential -128- Release 1.9

LEN% April 2, 2001 NetVortex

C.10.

C.11.

C.12.

C.18.

IMMU Issue Stall

When an IMMU stall occurs due to incrementing across a page boundary, AND there is any of the following
instructions found anywhere in the last doubleword of the page, then there is one issue stall in addition to the
IMMU stalls:

M-I branch of any kind

M-1J, JAL
EJTAG DRET

Icache Miss Stall

When an instruction cache miss occurs, the processor is stalled for the duration of the cache line fill
operation.

The number of cycles required to complete the line fill is system dependent.
Dcache Miss Stall

When a data cache miss occurs as the result of a load instruction, the processor stalls while it waits for the
data. The data cache releases the stall condition after the required word is supplied to the processor, even if
additional words must still be filled into the data cache. However, if the processor issues another load or store
operation to the data cache while the remainder of the line fill is in progress, the cache will again stall the
processor until the line fill operation is completed.

When a data cache miss occurs as a result of a load byte or load halfword, the processor stalls for the duration
of the cache line fill operation.

The number of cycles required to complete the line fill is system dependent.

Pipeline Timing Diagrams for Stalls

C.13.1. Non-Sequential Program Flow Issue Stalls

M-1JR,JALR

JR IDSEMW
delayslot | D SE M W
notvld ...

notvld I ..

target IDSE

M-1J, JAL, and M-I taken branches

J IDSEMW
delayslot I D SE M W
target IDSEM

Lexra Proprietary & Confidential -129- Release 1.9

LE)QW—\ April 2, 2001 NetVortex

M-I not-taken branches

Bntkn I DSEMW
delayslot 1D SE MW
notvld ...

notvld ...
delay+4 I DS

C.13.2. Load Subword Stall

Ib IDSEMMW
foo2 IDSEEMW
foo4 IDSSEMW
RHOLD X

C.13.3. Store-Load Stall

sws0,4@0) | D SEMW

Wws20@) IDSEMMW
foo3 IDSEEMW
RHOLD X

C.13.4. StoreAny - Store Subword Stall

sws0,4@0) | D SEMW

sbs20@) IDSEMMW

foo3 IDSEEMW

RHOLD X

shs04@0) IDSEMMW

sbs20@) IDSEEMMW

foo2 IDSSEEMW

RHOLD X X
C.13.5. MVCz Stall

mtcO I S EMW

foo I DSEMW

fool I DSEMW
C.13.6. LWCz Stall

lwcO IDSEMW

foo IDDSEMW

fool IDSEMW

Lexra Proprietary & Confidential -130- Release 1.9

I E)(Fiﬁ April 2, 2001 NetVortex

C.13.7. Icache Miss Stall

foo0 IDSEMMMMMMW
foo2 IDSEEEEEEMW
foo4 I~d ... IDSEMW
RHOLD X X X X X
C.13.8. Dcache Miss Stall
Iw IDSEM. W
foo2 IDSEMMMMMW
foo4 IDSEEEEEMW
RHOLD X X X X

1
Lexra Proprietary & Confidential -131- Release 1.9

I mg April 2, 2001 NetVortex

Lexra Proprietary & Confidential -132- Release 1.9

	NetVortex Data Sheet
	1. NetVortex Product Overview
	1.1. Introduction
	1.2. Key Features
	1.3. LX8000 Processor Overview
	1.4. NetVortex System Overview
	1.5. System Level Building Blocks
	1.5.1. SMMU
	1.5.2. Local Memory Interface
	1.5.3. Coprocessor Interface
	1.5.4. Custom Engine Interface
	1.5.5. Lexra Bus Controller
	1.5.6. Block Transfer Controllers
	1.5.7. Crossbar Device Interfaces
	1.5.8. Device Management Interface
	1.5.9. Building Block Integration

	1.6. RTL Core & SmoothCore
	1.7. EDA Tool Support
	Table 1: EDA Tool Support

	2. LX8000 Architecture
	2.1. Hardware Architecture
	2.1.1. Module Partitioning
	2.1.2. Six Stage Pipeline

	2.2. RALU Data Path
	2.3. System Control Coprocessor (CP0)
	Table 2: CP0 Registers

	2.4. High-Performance Context Switch
	2.4.1. New Context Registers
	Table 3: Context Status Register Detail

	2.4.2. Reset
	2.4.3. Determining the Number of Contexts in Software
	2.4.4. Initiation of Context Switch
	2.4.5. CSW Instruction
	2.4.6. LW.CSW, LT.CSW and LQ.CSW Instructions
	2.4.7. WD[.CSW] Instructions
	2.4.8. WDLW.CSW, WDLT.CSW and WDLQ.CSW Instructions
	2.4.9. Pipeline
	1. No branch or jump may be coded in the delay slot. A context switch changes program flow, like ...
	2. The register(s) loaded by LW.CSW, LT.CSW, LQ.CSW, WDLW.CSW, WDLT.CSW or WDLQ.CSW cannot be ref...

	2.4.10. New Thread Selection
	Table 4: Scheduler Ports

	2.4.11. Example Context Switch for Coprocessor Operation
	2.4.12. Program Access to New Registers
	2.4.13. Exceptions

	2.5. Low-Overhead Prioritized Interrupts
	Table 5: Prioritized Interrupt Exception Vectors

	3. LX8000 RISC Programming Model
	3.1. Summary of MIPS-I Instructions
	3.1.1. ALU Instructions
	Table 6: ALU Instructions

	3.1.2. Load and Store Instructions
	Table 7: Load and Store Instructions

	3.1.3. Conditional Move Instructions
	Table 8: Conditional Move Instructions

	3.1.4. Branch and Jump Instructions
	Table 9: Branch and Jump Instructions

	3.1.5. Control Instructions
	Table 10: Control Instructions

	3.1.6. Coprocessor Instructions
	Table 11: Coprocessor Instructions

	3.2. Opcode Extension Using the Custom Engine Interface (CEI)
	3.2.1. CEI Operations
	Table 12: Custom Engine Interface Operations

	3.2.2. Interface Signals
	Table 13: Custom Engine Interface Signals

	3.3. Memory Management
	Table 14: SMMU Address Mapping

	3.4. Exception Processing
	Table 15: List of Exceptions
	3.4.1. Exception Processing Registers: STATUS, CAUSE, EPC, BadVAddr
	3.4.2. Exception Processing: Entry and Exit

	3.5. The Coprocessor Interface (CI)

	4. LX8000 Instruction Extensions
	4.1. Context Switch and Data Transfer Operations
	Table 16: Context Switching Instructions

	4.2. Bit Field Processing Operations
	Table 17: Bit Field Processing Instructions
	Table 18: Hash Instruction Key Bit Definition

	4.3. Cross Context Access Operations
	Table 19: Cross Context Access Instructions

	4.4. Checksum Addition
	Table 20: Checksum Addition Instructions

	4.5. LX8000 Instruction Summary and Encoding
	Table 21: Instruction Summary
	4.5.1. LX8000 Instruction Formats
	4.5.2. Load Formats
	4.5.3. Write Descriptor Formats
	4.5.4. Context, Checksum and Bit Field Formats
	4.5.5. Cross Context Move Format
	4.5.6. Lexra-Coprocessor0 Register Access Instructions
	4.5.7. Lexra SUBOP Bit Encodings
	Table 22: Lexra SUBOP Bit Encoding

	5. LX8000 Local Memory
	5.1. Local Memory Overview
	Table 23: Local Memory Interface Modules

	5.2. Cache Control Register: CCTL
	5.3. Instruction Memory (IMEM) LMI
	Table 24: IMEM Configurations
	Table 25: IMEM RAM Interfaces

	5.4. Scratch Pad Data Memory (DMEM) LMI
	Table 26: DMEM Configurations
	Table 27: DMEM RAM Interfaces

	6. LX8000 Coprocessor Interface
	6.1. Attaching a Coprocessor Using the Coprocessor Interface (CI)
	6.2. Coprocessor Interface (CI) Signals
	Table 28: Coprocessor Interface Signals

	6.3. Coprocessor Write Operations
	6.4. Coprocessor Read Operations
	6.5. Coprocessor Interface and Pipeline Stages
	6.5.1. Pipeline Holds
	6.5.2. Pipeline Invalidation

	7. LX8000 EJTAG
	7.1. Introduction
	7.2. Overview
	7.2.1. IEEE JTAG-specific Pinout
	Table 29: EJTAG Pinout
	Table 30: EJTAG AC Characteristics
	Table 31: EJTAG Synthesis Constraints

	7.3. Single Processor PC Trace
	7.3.1. PC Trace DCLK - Debug Clock
	7.3.2. PC Trace PCST - Program Counter Status Trace
	7.3.3. PC Trace TPC - Target Program Counter
	7.3.4. Single-Processor PC Trace Pinout
	Table 32: Single-Processor PC Trace Pinout.
	Table 33: Single-Processor PC Trace AC Characteristics

	7.3.5. Vectored Interrupts and PC Trace
	7.3.6. Demultiplexing of TDO and TDI During PC Trace

	7.4. Multiprocessor EJTAG
	7.4.1. Connectivity Requirements
	7.4.2. Multiprocessor PC Trace Using Internal Trace Buffers

	8. NetVortex Crossbar Interconnect
	8.1. Processor-to-Device Paths
	8.2. Device-to-Processor Paths
	8.3. Bandwidth and Latency
	1. Local Bus - request and data are sent from the processor to the cache controller via the Local...
	2. CBus - request and data are sent from the caches to the LBC via the CBus.
	3. LBC Buf - one cycle to go through the transaction queue in the LBC. This queue is the LBC writ...
	4. LBC Addr/Crossbar Device Request - first cycle on the LBus, address is sent to crossbar interf...
	5. LBC Data/Crossbar Device Grant - second cycle on the LBus, data is sent to the crossbar interf...
	6. Device Queue/Crossbar Mux Request - Crossbar entry is seen on queue output and request to cros...
	7. Mux Grant - Crossbar Mux arbiter gives grant and sends load signal to device. New transaction ...
	1. Device asserts RdDataRdy to send split data to processor.
	2. Crossbar interface asserts RdDequeue to accept the split data. Split Data transferred to Read ...
	3. Crossbar Read Queue asserts request to transfer read data across crossbar to processor interface.
	4. Read Grant is given and Data is dequeued from crossbar read queue and sent to LBC.
	5. Data sent from LBC to cache interface via CBus.
	6. Data returned to processor via Local Bus. NOTE: The local bus is 32 bits wide. Two cycles are ...

	8.4. Crossbar Port Configuration
	8.5. Address Decoding
	8.5.1. Memory Mapped Devices
	8.5.2. Write Descriptor Devices
	8.5.3. Address Error Handling

	8.6. Arbitration
	8.7. Asynchronous Interface
	8.8. Queue Depths
	8.9. Instruction RAM Fill
	8.10. Device Management Interface
	8.10.1. DMI Read and Write Request Interface
	Table 35: DMI Request Signals

	8.10.2. DMI Request Waveforms
	8.10.3. DMI Split Read Data Interface
	Table 36: DMI Split Read Data Signals

	8.10.4. DMI Read Data Waveforms

	8.11. Direct FIFO Interface for Devices
	8.11.1. Device Request Interface
	Table 37: Device Request Signals

	8.11.2. Device Request Waveforms
	8.11.3. Device Read Data Interface
	Table 38: Device Read Data Signals

	8.11.4. Device Read Data Waveforms

	9. NetVortex Test and Set Engine
	9.1. Semaphore Addressing
	9.2. Single Word Read — Basic Test and Set
	9.3. Single Word Split-Read — (Enqueue and) Wait for Semaphore Free
	9.4. Single Word Write — (Dequeue Wait or) Clear Semaphore
	9.5. RAM Requirements for Semaphore Queues
	Table 39: Semaphore Engine RAM Requirements

	9.6. Semaphore Usage for Critical Code Section
	9.7. Semaphore Usage for Cross Processor Wait and Post
	9.8. Initialization

	10. NetVortex Block Transfer Subsystem
	10.1. Overview
	10.2. Block Transfer Buffers and Transfer Descriptors
	Table 40: Block Transfer Descriptor
	Table 41: BTC Reserved Fields in Transfer Buffer

	10.3. Example Transaction Flow
	1. Enable the Transfer. A processor initiates a receive block transfer with the WD.CSW instructio...
	2. Enqueue the Descriptor. The processor passes the descriptor to its BTE. In turn, the BTE enque...
	3. Select the Descriptor. The BTE analyzes the entries at the heads of its descriptor queues, and...
	4. Schedule the Transfer. The Rx BTC observes that the BTE is ready to accept data. (This is dete...
	5. Transfer the Data. When the BTE’s turn arises, the Rx BTC directs data beats to the BTE, and t...
	6. Signal the Processor. After the last beat is transferred, the BTE signals the processor to cle...
	7. Mark Thread Ready. The processor’s thread scheduler marks the applicable thread as ready for e...
	8. Process Packet Data. The thread is chosen by the thread scheduler and resumes execution. The t...
	9. Enqueue the Descriptor. The processor passes the descriptor to its BTE, which enqueues the des...
	10. Descriptor Next to Transmit. The BTE has a local copy of the currently transmitting sequence ...
	11. Transfer the Data. When the BTE notices the completion of the current transfer it will begin ...
	12. Signal the Processor. After the last beat is transferred, the BTE signals the processor to cl...

	10.4. Detailed Description of Block Transfer Modules
	10.4.1. Block Transfer Engine
	10.4.2. Rx and Tx Block Transfer Controllers
	10.4.3. Utopia Level 4 Rx and Tx Interfaces
	Table 42: Receive Port Signals
	Table 44: Lconfig Block Types
	Table 45: Memory Mapped Device Address Masks
	1. Clocked in the JTAG_CLOCK domain.
	2. Clocked in the BUSCLK domain if crossbar or LBC are asynchronous. Otherwise, clocked in the SY...
	3. Does not require a constraint (e.g., a clock).
	4. A false path (e.g. a configuration input tied to a constant).
	5. Timing is specified with a symbol in techvars.scr script (e.g. RAM timing).

	Table 46: NetVortex Top Level Port Summary
	Table 47: LX8000 Single-Processor Port Summary
	Table 48: Instruction Groupings For Stall Definition
	Table 49: Load/Store Ops Stall Matrix

